PROJECT STATUS PRESENTATION
TO REGION II FOR
POLLUTION ABATEMENT SITE
OSWEGO, NY

APRIL 6, 1988

TABLE OF CONTENTS

	<u>Page</u>
List of Figures	
List of Tables	
Purpose	
Situation	. 2
Technology Selection Rational	. 3
Technical Approach	
Sampling and Analytical	. 9
Vendor Selection	
Engineering Studies	. 15
Projecť Schedule	
Trip Report of Studies at Environment Canada	. 19
Analytical	
Results	. 30
Discussion of Results	
Future Plans	
Technical Evaluation	. 40
Economic Feasibility	
Monitoring Well Investigation	
Economic Evaluation of Reverse Osmosis Systems	
ECOnomic Evaluation of Reverse Osmosis Systems	. 4/
A	
Appendix 1 - Analytical Data	
Appendix 2 – Video Well Logs	
Appendix 3 - Bail Test Results	

LIST OF FIGURES

Numb	<u>per</u>	<u>Page</u>
1.	Reverse Osmosis (RO) Treatment System	5
2.	Powdered Activated Carbon/Microfiltration/Reverse Osmosis (PAC/MF/RO) Treatment System	6
3.	UV-Oxidation Treatment System	7
4.	Typical Process Flow, Mixed Chlorinated Aromatics	8
5.	EPS Mobile Reverse Osmosis Unit	12
6.	Schematic of RO Unit Operation	13
7.	Reverse Osmosis Unit Layout	14
8.	Powdered Activated Carbon/Microfiltration/Reverse Osmosis (PAC/MF/RO) Treatment System	24
9.	Reverse Osmosis (RO) Treatment System	28
10.	PAS Base Map	43A

LIST OF TABLES

i

Numb	<u>er</u>	<u>Page</u>
1.	Comparison of Reverse Osmosis and Microfiltration Characteristics	4
2.	REAC Project Summary Schedule	18
3.	Readings from PAC/MF Treatment	23
4.	Reading for RO Treatment	26
5.	Description of Samples taken during Engineering Study at Environment Canada	27
6.	Analytical Results, Volatile Organics	31
7.	Analytical Results, Base Neutral and Acid Extractables	32
8.	Analytical Results, Base Neutral and Acid Extractables	33
9.	Analytical Results, Base Neutral and Acid Extractables	34
10.	Analytical Results, Metals and Wet Chemistry	35
11.	Treatment Efficiency of Volatile Organics	37
12.	Treatment Efficiency of Base Neutral and Acid Extractables	38
13.	Treatment Efficiency of Metals and Wet Chemistry	39
14	Wall Data Summary	434

PURPOSE

Region II activated the Environmental Response Team to perform engineering studies on the Pollution Abatement Services site (PAS) leachate to determine the feasibility of installing a semiautomatic treatment system which would: 1) maintain a lower liquid level within the slurry wall, thereby protecting adjacent wetlands from leachate overflowing the slurry wall, and 2) eliminate or reduce the frequency of disposal, thereby reducing associated costs.

SITUATION

The Pollution Abatement Services (PAS) site is a remediated Superfund site in Oswego, NY. Remediation of the site involved the removal of thousands of drums of hazardous wastes both above and below grade level. A slurry wall was constructed around the site perimeter to eliminate the migration of hazardous substances remaining in the soil. However, recent evidence suggests that leachate periodically overflows, or otherwise breaches, the slurry wall. To avoid this problem, it is necessary to lower the leachate level within the confines of the slurry wall every two to three months. This in turn necessitates the expenditure of time, money, and manpower to pump, transport and dispose of the leachate.

TECHNOLOGY SELECTION RATIONAL

Three technologies will be explored via vendor treatability studies: 1) reverse osmosis (RO) with multiple pass treatment, 2) reverse osmosis with powdered activated carbon and microfiltration pretreatment (PAC/MF/RO), and 3) UV-oxidation.

Reverse osmosis employs a semipermeable membrane system that retains organic and inorganic solutes behind the membrane and allows solvent. water in this case, to permeate through the membrane. This separation creates two process effluent streams: a retentate containing the concentrated solutes and a permeate containing the filtered solvent-water. The permeate from the RO system (1st pass permeate) is then reprocessed in the RO system to remove residual contaminants, if necessary, resulting in 2nd pass permeate. Depending on treatment effectiveness, permeate can be discharged directly into a POTW or can be reinjected into the landfill to recharge and, thereby, flush the landfill. Another potential alternative is to polish the permeate with granulated activated carbon and mixed bed ion exchange resins, if necessary, for surface water discharge. The resulting reduced volume of concentrated organic and inorganic contaminants in the retentate can be treated off-site at a treatment, storage, and disposal (TSD) facility at an expected reduced cost. Figure 1 shows a schematic of a representative RO system.

In the reverse osmosis with powdered activated carbon with microfiltration system, powdered activated carbon (PAC) is mixed with the raw landfill leachate and mixed until most organics and some inorganics have had time to adsorb on the activated carbon. This mixture is subsequently filtered with a microfiltration (MF) unit to remove the PAC particles. The MF permeate is treated with a reverse osmosis system to remove any residual contaminants. The RO permeate can be discharged into a POTW, reinjected into the landfill, or discharged into surface waters as the permeate from the multiple pass RO system. Figure 2 shows a schematic of a representative PAC/MS/RO system.

A short comparison between microfiltration and reverse osmosis semipermeable membrane systems are presented below. Table 1 summarizes this comparison.

Microfiltration (MF)

This semipermeable membrane separation technique encompasses the filtration of particles from 0.5 to 5 microns. The membrane consists of a number of pore which pass directly through the membrane. The pore are relatively uniform in size and occupy approximately 80% of the membrane surface.

Reverse Osmosis (RO)

This semipermeable membrane separation technique encompasses the separation of inorganic salts and simple organic compounds under

pressure. The size of the species is in terms of molecular weight, and RO can be defined as the retention of solutes below 500 molecular weight. The RO membrane is a continuous gel. Separations are based on differential rates of diffusion. The small molecular species exhibit significant osmotic pressure across the membrane, resulting in high operating pressures.

TABLE 1. COMPARISON OF REVERSE OSMOSIS & MICROFILTRATION CHARACTERISTICS

	Microfiltration		Reverse Osmosis
0	0.5 to 5 micron cut-off	0	below 500 MW cut-off
0	porous membrane	0	homogenous gel
0	pore flow transport	0	diffusive transport
0	20-100 psi operation	0	200-1500 psi operation
0	rejection = f (pressure)	0	rejection = f (pressure

UV-oxidation degrades nearly all organic compounds into carbon dioxide, chlorine ions, and water. Organic compounds are degraded through the synergistic oxidation effects of UV photon and hydrogen peroxide or ozone. The systems have shown to be simple and effective for industrial wastewaters. The effluent can be reinjected into the landfill or polished with a mixed bed ion exchange resin for discharge to a POTW or surface waters. Figures 3 and 4 show a schematic of a representative UV-oxidation system.

These processes were selected on their previously successful applications for industrial wastewater/treatment.

FIGURE 3.
UV-OXIDATION TREATMENT SYSTEM

TYPICAL PROCESS FLOW, MIXED CHLORINATED AROMATICS FIGURE 4.

TECHNICAL APPROACH

SAMPLING AND ANALYTICAL

Sampling Plan

The objective of the sampling efforts was to obtain representative leachate from the in-ground storage tank at PAS. A sampling effort was performed on 18 December 1987 to obtain samples for leachate characterization. A later effort was carried out on 23 February 1988 to obtain the large sample volumes required for the UV-oxidation, microfiltration, and reverse osmosis engineering studies.

Before sampling, the leachate collection pumps were operated for approximately two hours to obtain fresh leachate and to mix leachate in the storage tank. The storage tank was sampled at the surface with a plastic bucket and immediately transferred into the appropriate containers for analysis. These containers were packed into coolers on-site, iced, and sent by overnight courier to an analytical laboratory.

The sampling effort for the engineering studies extracted approximately 100 gallons of leachate. Two 55-gallon drums, containing liners, were filled to total capacity to eliminate headspace and each placed in 85-gallon overpack drums.

Analytical Plan

The objective of the leachate analysis is to provide information for preliminary feasibility of the selected treatment options. The treatment system vendor, EPA Environmental Response Team (ERT) Work Assignment Manager (WAM), and Response Engineering and Analytical Contract (REAC) Task Leader (TL) will use the analytical data to determine the preliminary feasibility of selected treatment technologies for the PAS leachate. The analyses included:

- total priority pollutants plus 40;
- o total suspended and dissolved solids;
- o titration curves (for total acidity);
- o pH;
- o TOC;
- o BOD;
- o COD; and
- o flashpoint.

Choice of analytical parameters from the samples taken at the subsequent engineering studies were dependent upon the results of the remedial investigation. Again, this choice was made jointly by the treatment system vendor, EPA/ERT WAM, and REAC TL. The analyses for the engineering studies included:

- o total priority pollutants plus 40 (except PCBs and pesticides);
- priority pollutant metals plus iron and calcium;

- sulfate; cyanide; total suspended and dissolved solids; TOC; and COD.

VENDOR SELECTION

Several vendors were contacted for reverse osmosis (RO) treatment. The existence of other RO vendors will continued to be explored. RO vendors and the associated costs for treatability studies are:

- Jack Holz and Associates, Fredricksburg, VA., Contact Jack Holz, (703) 373-7466, charges \$750/day and a \$750 set-up fee plus membrane cost (\$375 maximum per membrane tape);
- Osmonics, Inc., Minnetonka, Minn., Contact Steve LaBarg, (800) 351-9008, charges \$750/day, plus membrane cost (\$450 maximum per membrane type); and
- Environment Canada, Ottawa, Ontario, Contact Harry Whittaker, (613) 998-9622, charges no fee for the study except \$1000 for membrane costs.

Environment Canada (EC) has developed a unique expertise in the RO treatment of CERCLA type aqueous wastes, has specialized in field cleanup of contaminated aqueous waters, and has several mobile treatment units available for use (see Figures 5, 6, and 7). In addition, EC has offered free use of their portable reverse osmosis unit, except for a membrane usage fee and labor, a significantly lower cost than competitive vendors; hence, they were selected for the RO study.

Environment Canada also has bench scale UV-oxidation equipment so these studies will also be performed at their Ottawa facility at little or no extra cost to EPA.

EPS MOBILE REVERSE OSMOSIS UNIT

FIGURE 5.

ENGINEERING STUDIES

Treatability studies will commence after a review of the analytical data obtained from the sampling effort. Vendors, WAM, and TL will review data and determine preliminary feasibility and expected success of the engineering studies to be performed. These studies will be explored, first, at the vendor's or the EPA Edison facility - Phase I. Later, if Phase I indicates a technically and economically feasible alternative has been found to off-site treatment, on-site Phase II engineering studies will commerce in Oswego, NY.

The following questions must be answered by the engineering effort:

- What are the costs of the on-site processes used for waste treatment? How do these costs compare with total treatment in an off-site TSD facility? An economic evaluation will be performed as part of the feasibility study to answer these questions. This evaluation will include treatment vendor costs, estimated ERCS costs for on-site treatment vs. off-site treatment, transportation, utility consumption, chemical consumption, and disposal.
- o What is the effectiveness of UV-ozonation on the leachate treatment? How much treated leachate will be discharged? What is the residual contaminant levels of the treated leachate? These questions will be explored during the engineering study.
- o What is the wastewater volume reduction of RO? What is the volume of the retentate remaining from RO? The highest concentration ratio (the measured volume of the feed divided by the volume of the retentate) that the reverse osmosis system can effectively operate without a severe permeate flux reduction will give us this information.
- The concentration of contaminants in influent and all effluent streams for the treatment systems will be examined. An analysis of these streams only for those contaminants present and of interest (after a review of the Phase I sample analysis data) will be performed. All analysis will be in compliance with NY DEC and EPA Region II requirements and will be performed by the Phase I analytical subcontractor.
- O Can the treatment system effluent be discharged into surface waters? The results of the engineering study will be given to EPA Region II and NY DEC for their evaluation. The results will include effluent contaminant concentration, volumetric discharge, on-site effluent storage scheme and capacity, and discharge duration.
- o What is the duration of on-site, fullscale treatment for each process? This will be estimated from treatment system capacity, wastewater volume and start up time.
- o How often does the reverse osmosis unit have to be cleaned and can it be cleaned effectively? This question will be thoroughly explored during the treatability study using various cleaning agents.

o What affect will winter temperature at the site have on the on-site, fullscale treatment systems? An evaluation of this question will be made by the vendor engineer, the WAM and the TL. If a potential problem exists, a contingency plan will be devised to remedy the situation.

If engineering studies prove target treatment technologies effective and economical, on-site treatment will be recommended, otherwise continued off-site treatment at a Treatment, Storage and Disposal (TSD) facility will be the treatment option of choice.

The Weston/REAC Task Leader (TL), Robert Evangelista, will maintain contact with the EPA Work Assignment Manager (WAM), Thomas Kady, to keep him informed about the technical and financial progress of this project. The TL will be responsible for all subcontractor work, for organizing any additional sampling efforts and for reports. Activities under this project will be summarized in appropriate format for inclusion in REAC Monthly and Annual reports.

PROJECT SCHEDULE

Work on this assignment will commence on 17 December 1987. The duration of the assignment will be approximately 7 months or 10 months for completion of Phase I and Phase II, respectively. A REAC Project Summary Schedule (Table 2) lists the completed tasks and forecasted duration of activities.

The project tasks have been divided into 3 sections: 1) remedial investigation, 2) Phase I engineering studies, and 3) Phase II engineering studies.

Remedial investigation tasks include:

- o development of work plan,
- o review of previous site information,
- o site sampling for waste characterization,
- o sample analysis, and
- o preliminary technical evaluation.

Phase I engineering studies tasks include:

- o sampling for treatability study,
- o transport samples,
- o vendor studies off-site,
- o sample analysis,
- o feasibility and economic analysis,
- o decision point, and
- o a final report if the decision is negative.

If the evaluation of the Phase I studies is positive, the Phase II engineering studies tasks include:

- vendor on-site studies,
- sample analysis,
- o data evaluation,
- o final report.

A written final report that includes raw data will be supplied to the EPA Work Assignment Manager to make recommendations to the EPA On-Site Coordinator.

THRLE 2
REAC PROJECT SUMMONY SCHEDULE
POLLUTION ABRIENEMT SERVICES
LEACHNIT TREATMENT STLEY
EPA HORK ASSIEWWENT MO. 0-63

)>) ACTIVITY BUMPATON - FOREDAST C COMPLETED THEN

STIGNING IN THE COLOR OF THE CO		85	JAMPHRY	HEBRURAY I	HOME	APRIL 1	AUM	JUNE		MEUST	Ti.	OCTOBER	MOVEMBER	MEDENBER I	JANESHY !	FEBRUSAY	
EVELLO MORE PLAN IT IS INFORMATION EVELLO MORE PLAN IT IS INFORMATION EVELLO MORE PLAN SHOLE FAMILYSIS EVELLO MORE PLAN SHOLE FAMILYSIS EVELLO MORE PLAN EVELLO MORE PLAN EVELLO MORE PLAN SHOLE FAMILYSIS EVELLO MORE PLAN EVELLO MORE P	1	1381	2		98	1988	1586	158	986	1568	1000	1968	1366	986	1983	1888	1389
THE LIMPOWATION C C C C C C C C C C C C C C C C C C C	REPEDIAL INVESTIGRATION :					-											
EVEN SHE SHOULDS SHE SHOULDS SHE SHOULDS SHE SHOULDS SHE INDIGHT EDANICAL EVELLATION SHE STADIES ENDORS TROISES FF-SITE F	MENEL OP ADMIX PLAN						_										
### SWPUTION C C C C C C C C C C C C C C C C C C C						-					_						
SENTEN SEE 1 DR. STUDIES SERVINGEN SEE 1 DR. STUDIES SERVINGEN	SITE INFORMATION	3				_			-		_			-			
SHIPLE SHOPLINE TECHLOR ENALISTIC FER I DAL STIDIES : FER INSTITUTY STIDY FER INSTITUTY SHOP FER I DAL STIDIES FER INSTITUTY SHOP FER IN	REVIEW			-													
######################################		2			-	-											
### FE PARLYSIS ### I DARL STIDIES : ### LIBER STIDIES : #### LIBER STIDIES : #### LIBER STIDIES : #### LIBER STIDIES : ##### LIBER STIDIES : ###################################				_	-	-	_		_		_						J
REC. I DRL. STLDIES : I C C C C C C C C C C	. SHAPLE ANALYSIS		u			-											
RRE 1 DAL STUDIES : REPAILOR TOW REPAILOR FOR THE THROUGH SAPELES : C C C C C C C C C C						-											3
PRE DAM, STLDIES																	
REF I BNL. STUDIES REMEDIAL ITY STUDY REMEDI					-	-	-										
PRINCING FOR PRINCIPAL	PARRE I BAR, STUDIES :			-	-		-				-		327.0	_			
FEMORE STUDIES FE-SITE SHOCK STUDIES FEMORE STUDIES FEMORE STUDIES FEMORE STUDIES FEMORE STUDIES FEMORE ON-SITE STUDIES FEMORE SHOULD STUDIES FEMORE STUDIES FEMORE SHOULD STUDIES FEMORE STUDIES FEMORE STUDIES FEMORE SHOULD STUDIES FEMORE STUDIES FEMORE STUDIES FEMORE SHOULD STUDIES FEMORE STUDIES FEMORE SHOULD STUDIES FEMORE ST						-											
FENDUR STUDIES FF-SITE SHOPLE AWALYSIS FF-SITE SHOPLE AWALWSITOW FF-SITE SHOWL REDORT FF-SITE SHOWL RE							-										
FF-51TE FF-51T		_		_	-	-					_						
FF-SITE SHOULE AWAL YSIS FFRSIBILITY AND FERSIBILITY AND FOR DELISION FOR DELISION FOR IT BMS. STADIES FOR IT BMS. STADIES FOR IT BMS. STADIES FOR IT				13 1			_				-						
FF-SITE FROM STRUETS FF-SITE FROM STRUETS FF-SITE FROM STRUETS FROM STRUETS FROM STRUETS FOR LIGHTION IS FOR LIGHTON IS FOR LIGHTON IS FOR LIGHTON POSITIVE 1 SOMPLE ANALYSIS FOR UNITED TO STRUETS FOR LIGHTON FINAL REPORT FIN				_ :													
EDMOLE GAMILYSIS FERSIBILITY AND ECCHONIC EVALUATION EDMOLE STADIES FENALUATION POSITIVE ::				-													
EDWOLE GWALMSIS FEMSIBILITY AND ECONOMIC EVALUATION FEMSIBILITY AND ECONOMIC EVALUATION IS FEMALUATION POSITIVE: FEMALUATION POSITIVE: FEMALUATION FINAL REPORT F				_	-	_	-										
EDWONIC EVALUATION EDWONIC EVALUATION IF EVALUATION IS FEMALUATION POSITIVE, FINAL REPORT SAMPLE AWALYSIS FINAL REPORT FINAL REPORT (1))))))))))))))))))))))))))))))))	SANDLE AMPLYSIS			_	IJ	-	-				_		7				
EDMONECISION EPONOMIC EVALUATION IF EVALUATION IS NEBRITIVE, FINEL REPORT NEBRITUE, FINEL REPORT NEBRITUE, FINEL REPORT NEBRITUE, FINEL REPORT NEBRITUE, FINEL REPORT NEBRITUE ANALUATION NEB	Condition very deal				_ :	-	-										
IFS					-	-	1		i								
#EPORT	EXAMINITE EVILLATION	_		_	_	-	_				_						
TIVE :	, EPA DECISION	-			-	_		~			_					-	
MEPORT1 TIVE :						-											
TIVE:::	MEBATIVE, FINAL REPORT						-										
TIVE:		_		_	-	-	_			L	_	Ī				-	
TIVE::	PHOSE II DAG, STUDIES	_		_	-	-	_		_		_	_		_	_		
TUDIESI	IF EVALUATION POSITIVE :						-										
	S. VENDOR DIM-SITE STUDIES	-		_	_	-	_		((((((()))))))		_		270		-		
		_		_	-	-	-				_			_	-		
	6. SHAPLE ANALYSIS									00000000							
	S. DATA EVALUATION				-						100000000						
		_		_	-		-				_						
	6. FINAL REPORT				-						10000	((((

TRIP REPORT OF STUDIES AT ENVIRONMENT CANADA

T0:

Tom Kady, EPA Environmental Response Team,

Work Assignment Manager

FROM:

Robert Evangelista, Weston/REAC, Project Engineer

THRU:

Mike Skirka, QA/QC Officer

SUBJECT:

ENGINEERING STUDIES AT ENVIRONMENT CANADA, OTTAWA, ONTARIO

DATE:

March 5, 1988

Tom, attached is the Trip Report on the pilot-scale engineering studies performed at Environment Canada, River Road Environmental Testing Center, Ottawa, Ontario. These studies explored the filtration, concentration, or destruction of contaminants in the landfill leachate from the Pollution Abatement Services site, Oswego, NY, using three technologies: reverse osmosis, powdered activated carbon/microfiltration pretreatment with reverse osmosis, and UV oxidation.

This report details the testing of reverse osmosis and powdered activated carbon/microfiltration with reverse osmosis tests. UV oxidation tests will be performed in the immediate future and a future report will cover this test.

TRIP REPORT ENGINEERING STUDIES WITH POLLUTION ABATEMENT SERVICES (PAS), OSWEGO, NY LANDFILL LEACHATE AT ENVIRONMENT CANADA

INTRODUCTION

On February 23, 1988, two 55-gallon drum samples were taken from the Pollution Abatement Services site (PAS) in Oswego, NY, under the auspices of NY Department of Environmental Conservation (DEC) representative, Dick Brazell. These samples were transported to Environment Canada (EC) Ottawa, Ontario for engineering studies of leachate treatment. From February 24th to 27th, 1988, several cleanup techniques were explored on this landfill leachate under the direction of Harry Whittaker at Environment Canada's River Road Environmental Testing Center in Ottawa, Ontario. A preliminary analysis of the leachate prior to treatment is shown in Sample O, Appendix 1 of this report. The treatment methods utilized consisted of:

- Addition of Powdered Activated Carbon (PAC) system to the leachate followed by membrane separation and concentration with tubular Microfiltration (MF) and spiral wound Reverse Osmosis (RO).
- System raw waste was pretreated with 5 micron polypropylene filters to remove large particulates and subsequently was processed by RO. The RO permeate from this treatment was pretreated by RO to produce second pass permeate.
- UV oxidation of the leachate.

In the first two cases, hydrochloric acid was added to the leachate prior to treatment to lower the pH to between 5 and 6. Since the orange color of the raw leachate indicated that it contained iron, this iron would tend to precipitate out when the waste was concentrated by RO, and deposit on the membranes causing fouling if the pH of the waste were not maintained between 5 and 6.

The purpose of those tests with Systems 1 and 2 was to retain and concentrate the contaminated landfill leachate while generating relatively contaminant-free permeate (filtrate). The purpose of the test with System 3 was to eliminate all organics from the leachate. The following definitions should be noted in this report: retentate or concentrate is that material that is retained or concentrated by a semipermeable membrane such as MF or RO; and permeate or filtrate is that substance which permeates or passes through the membrane.

Operations and Testing

The PAC/MF with RO (see Figure 8) process was tested to determine how well PAC/MF would pretreat the waste to prevent fouling of RO membranes. However, since the waste contained a large number of both organic and inorganic compounds, it was recognized that PAC addition followed by MF alone would probably not be sufficient to completely treat the waste. In addition, the process could prove more cost effective to pretreat the wastes in this manner as compared to conducting double pass RO (that is, treating the permeate from the first pass again). This is due to the lower power requirements (since lower operating pressures are used) and the higher filtrate flux rates with tubular membranes.

The test procedure was as follows:

- 1. PAC (5 g/L) and 400 mL concentrated hydrochloric acid (HC1) were added to approximately 55 gallons (200 liters) of the raw waste and the mixture was stirred by a submersible pump for three hours to allow contaminants to adsorb on the carbon.
- 2. The MF unit was operated for two hours with the permeate recycling to the feed tank, i.e., no concentrating, to allow the permeate flow rates to stabilize. A sample of the filtrate (Sample #2) was taken by EPA after 120 minutes of operation. Readings taken during this portion of the trail are shown in Table 3. Table 5 contains the parameters analyzed in all samples.
- Next, the leachate was concentrated to one-fifth of its former volume (5 X concentration). After concentration of the feed, a sample of the filtrate was taken (Sample #1).
- 4. Two new TORAY RO spiral wound membranes were conditioned with the filtrate from the MF test. This filtrate was recirculated through the RO unit at 400 psi for one hour. Next, the pressure was slowly raised over 40 minutes to an operating pressure of 800 psi. Throughout this operation the RO permeate was recycled into the feed tank to maintain a 1 x concentration. Sample #3 was taken of the RO permeate prior to concentration. The filtrate was then concentrated down to one quarter (4x) of its former volume and Sample #4 of the RO permeate was taken.

TABLE 3. READINGS FROM PAC/MF TREATMENT

Time (min)	MF Permeate Flow Rate (Lpm)	Temperature (°C)	Pressure (psi)
0	9.74	12.0	43
10	10.40	13.5	43
20	10.62	15.0	43
40	11.65	16.0	43
80	12.77	20.0	43
100	13.36	22.0	41
120	16.81	24.0	42

<u>Result</u>

Treatment by PAC/MF resulted in a clear and colorless filtrate, but the filtrate had a distinct odor and foamed when shaken. In addition, when sodium hydroxide (NaOH) was added to a sample of the MF filtrate, an orange color appeared indicating that little iron (and probably other inorganics) had been removed by MF. The RO permeate that resulted from the processing of the MF filtrate had no odor, foamed very little, and showed no color change when NaOH was added. RO permeate flow rates were fairly constant, starting at 4.0 Lpm at 1 x concentration and decreased slightly during concentration by RO to 3.5 Lpm at 4x.

SYSTEM TWO - REVERSE OSMOSIS

Operations and Testing

In this case, approximately 55 gallons (200 L) of the raw waste were transferred to a stainless steel tank and 400 mL of concentrated HCl was added to reduce the pH to 5-6. The process schematic is shown in Figure 9. The feed line to the RO unit was simply transferred to the permeate collection barrel to accomplish a second pass of the RO permeate through the system.

The procedure followed for the testing with RO was as follows:

- Sample #5 of the raw feed was taken after transfer with a hand operated diaphragm pump. HCl (400 mL) was added to the feed during the transfer to the stainless steel tank.
- 2. The raw feed was circulated through the RO unit for one and a half hours at an operating pressure of 800 psi with the permeate recycled to the feed tank maintaining 1 x concentration to determine permeate flow rate stability. Flow rates observed during this period are shown in Table 4. Sample #6 of the permeate was taken after recycling.
- The feed was concentrated to approximately 4x. Sample #7 of the permeate and #9 of the concentrate were taken at maximum concentration.
- 4. The permeate removed from the feed during the above concentration procedure was then reprocessed by the RO unit to produce second pass permeate. Sample #8 was taken of the second pass permeate to distinguish if any difference existed between first pass permeate.

Results

The first pass permeate had visual quality comparable to the filtrate that had been processed by PAC/MF/RO in the previous testing; there was no visible improvement in the second pass permeate over the first pass permeate. There was no indication that the membranes were fouling during this run as the permeate flow rates remained constant over the trial (see Table 4). This would signify that the 5 micron filters were sufficient to remove large particulates that would otherwise deposit on the membranes. However, it will be necessary to conduct much larger scale trials to accurately learn how much down time would be necessary for membrane cleaning if the system were to be operate for longer periods of time while processing larger volumes of waste. The results from this testing show that no pretreating (aside from coarse prefilters) is necessary to treat this waste by RO. It should also be noted that no color changes were noted in the permeate when NaOH was added to it, indicating that iron, and probably most other inorganics, were removed along with the organic compounds.

TABLE 4. READINGS FOR RO TREATMENT

Time (min)	Perm Flow Rate (Lpm)	Conc. Flow Rate (Lpm)	Pressure (psi)	Temp (C)
0	4.0	4.5	790	10.0
20	4.5	4.5	790	11.5
30	4.5	4.5	790	12.0
50	5.0	4.5	790	13.0
75	6.0	4.3	785	14.5

Appendix contains preliminary GC work by EC (note that peak identities and peak areas are not included).

TABLE 5. DESCRIPTION OF SAMPLES TAKEN DURING ENGINEERING STUDY AT ENVIRONMENT CANADA

Sample #	System Samples	Liquid Stream Sampled	Analytical Parameters	Laboratory
1	PAC/MF/RO	MF permeate after concent-	pp + 40 ^a , Fe, Ca, SO ₄ ,	Envirotech
2	PAC/MF/RO	ration MF permeate after recycling	Fe, Ca, ŚO ₄ , TSS, TDS, CN pp metals ^b , Fe, Ca,	Envirotech
3	PAC/MF/RO	and before concentration RO permeate	misc. organics pp metals, Fe,	EC ^C Envirotech
3	rac/m/ko	after recycling and before	Ca, misc. organics	EC
4	PAC/MF/RO	concentration RO permeate after concent-	pp + 40, Fe, Ca, SO ₄ , TSS, TDS,	Envirotech
5		ration Raw landfill leachate	CN' pp + 40, Fe, Ca, SO ₄ , TSS, TDS,	Envirotech
6	RO	RO permeate after recycling and	miśc. organics pp metals, Fe, Ca,	EC Envirotech
		before concent- ration	misc. organics	EC
7	RO	RO permeate after concent-	pp + 40, Fe, Ca, SO ₄ , TSS, TDS, CN,	Envirotech
		ration, first pass	miśc. organics	EC
8	RO	RO permeate, second pass	pp + 40 , Fe, Ca, SO ₄ , TSS, TDS, CN,	Envirotech EC
9	RO	RO leachate retentate after concent- ration	misc. organics pp metals, Fe, Ca, misc. organics	Envirotech EC

 $^{^{\}rm a}$ pp + 40 = priority pollutants + 40 (does not include PCB's and pesticides).

SYSTEM THREE - UV-OXIDATION

 ${\sf UV}{\sf -Oxidation}$ tests will be performed in the immediate future .

b pp metals = priority pollutant metals.

 $^{^{\}rm C}$ EC = Environmental Canada, GC methods with Megabore Column or Purgen and trap.

RECOMMENDATIONS

A higher PAC loading (such as 10 g/L) should be explored in combination with MF on the waste as this may create a higher quality filtrate. In addition, this would have the effect of increasing the filtrate flow rates from a phenomenon known as the "tubular pinch effect". Tubular pinch effect is the flow regime set up in tubes where the bulk flow of liquid in the center of the tube is in a turbulent regime and the liquid on the sides of the tube is laminar. EC claims this effect reduced fouling.

Further work should be performed with the PAC/MF concentrate to eliminate all concentrate liquids by processing with a small MF cartridge. This cartridge is disposable and contains a pleated membrane of a pore size of 0.2 microns. It may be possible to achieve this same quality of filtrate with the cartridge as it is with the larger tubular MF membranes. In addition, because these cartridges are very portable, disposable, and operate under crossflow conditions (and therefore do not foul too quickly as do conventional filter cartridges with slurries), it may be feasible to use a bank of these cartridges to pretreat the waste prior to RO treatment.

Further work should be done with the RO permeate: concentration ratio controlled at 4:1 or 8:1. The permeate: concentrate ratio is the ratio of the flows of permeate and concentrate leaving the system and does not include the recycle flow rate in the recycle loop. Since one of the control valves on the RO unit would not seat properly, it was impossible to try RO at different ratios. It is important to determine the performance of the system under these conditions as this may reduce the duration required to treat the waste. It could reduce downtime since the membranes may foul less rapidly.

Although this testing was conducted on a pilot plant scale, field tests should be conducted as well to determine how the system(s) would perform under actual treatment conditions, for longer durations and at higher concentrations of the leachate. Additional field tests are necessary to explore the effect of concentration ratio on permeate flux through the membrane to assist in system design and to observe the effect of the leachate on membrane fouling to assist in process design. Furthermore, field tests will explore the delicate art of membrane cleaning after long filtration runs by devising a cleaning regime and exploring different mixes of cleaning agents.

OLATILE ORSAWICS	II SØ I II DETECTION I	LANDFILL	I 95 I I DETECTION I	SS (2) LANOFILL LEACHNIE	DETECTION		IST RO PERM. I INFTER COMC. I I 1st PAGS I	I DETECTION	I PERMEATE II I PERMEATE III	7	ISA RO PER IAFTER CONC I 2nd PASS
	(ug/1)		(ug/1)			l (ug/1)			l (ug/1) l		1 (ug/1)
Benzene	-	929J	1 580 1	1988 1	258	1 603	11 140 1	1 100	J NØ 11	5, 0	1 2
	1 1250	NO	588	ND I	250	I ND		1 189			1 140
	1250	NO I	500			1 145		1 186	1 140 11		1 140
	2500 1		1968		566	1 100		290	1 10 11	19	1 10
Carbon Tetrachloride	1250	NØ I	500	NØ 1	250	1 140	- 1	1 100			1 10
Chlorobenzene	-	790.3	500	768 1		1 140	1 684 1	1 198	1 10 11		1 3
Chlorosthane	2500		1988			1 160	1 145 1				1 140
2-Chloroethylvinyl Ether	2500	NO I	1 1986 1	NO I	560	1 140	1 10 1	1 290	1 160 11	19	1 10
Chlorofors	1250	NO I	580	140	250	1 146	1 10 1	1 198	HD 11	5. 0	1 4.
	11 2500 1	140	1 1888 1	165 1	1 589	1 140	1 100 1		1 10 11	10	1 1.
Di bromoch I oromethane	1250		1 580	140		1 140	1 140 1	1 189	1 100 11		1 10
1, 1-9i chloroethane	- 1	48 8 J				1 1603			1 160 11	5. 8	1
1, 2-9i chloroethane	- 1	98 8 J		1180		1 374		1 188	1 160 11	5.0	1 1
SA AND THE PROPERTY OF THE PARTY OF THE PART	1259	HD .	598	160		1 160	1 140 1	1 199	1 160 11	5. 0	1 3
trans-1, 2-\$ichloroethene	11 - 1	13380	and the second	Salar Survey Committee	100	3630	1 3769 1	A STATE OF THE PARTY OF THE PAR	1 180 11		1 46
1, 2-Bichloropropane	1259		599	100	250	1 140	3	1 199			1 140
cis-1, J-Bichloropropose	1250 1		580	16	909	1 160	1 140 1	100	1 160 11	3	1 160
trans-i, J-Bichloropropess	11 1259	ND	500	1 1	1 256	1 140	i io	160			1 16
Ethyl Benzene	- 1	4168			1 250	1 140		1 198	1 180 11		1 6
	11 - 1					1 6729	The second of the second		The state of the s		1 163
THE RESIDENCE OF THE PARTY OF T	11 1250	ND	500		The second second	1 100		1 198			l MB
	11 - 1	47 0 J		17031	The second	1 140	The state of the s	1 199	1 16 11		1 140
	11 -		380	3910	230	1 753		1 180	1 100 1	5.0	1 61
1, 1, 1-Trickloroethame	11 1250		588	250/		I ND	1 100 1	199	1 100 11		i i
1, 1, 2-Trichlorouthams	11 1259 1	HB	11 580	1 140 1	250	1 160	1 160 1	1 100	Note that the same of the same	5.0	1 160
Trichloroethene	11 1250	l NO	500	18031	1 230	1 160	1 160 1	1 188	97	5.0	1 .
Trichlorofluoromethang	1230	I NO	300	1 10 1		1 140	1 10 1	1 198		5.0	1 140
Visyl Chloride	11 - 1	1300.1	1 1900	1800 1	j 500	1 570	1 778		The second second	19	1 6
	11 - 1	10000	11 380		1 250	1 10		100			1
metatively identified compounds)											-
Acetone	11 -		11 500	1 - 1	-	j 570	579	ıı -	1 69 11		1 -
Trichlorofluoroethane (Freom 113)	11 -	1 429			-	i -		-	i - ii	-	ı -
Isopropanol	11 -	429	11 588	1 - 1	1 -	1 139999	1 - 1		3900 11		-
	11 -		11 -	738	1 -	-			1 - 11		-

TABLE 7. ANALYTICAL RESULTS, BASE NEUTRAL EXTRACTABLES

BAGE NEUTIMAL EXTRACTABLES	II 90 I II DETECTION I II LIMIT I II (ug/l) I	99 LANDFILL LEACHATE (ug/1)	DETECTION I	95 (2) LANDFILL LEACHATE (ug/1)	I DETECTION	PERMENTE	PERMEATE	1 1st PAGS	IAFTER CONC. I 2nd PASS I (ug/1)
1, 3-Dichlorobenzene	11 28 1	NO I		ND I		I NO	I ND	1 160	1 10
1, 4-Bichlorobenzene	11 29 1	100	190 1	140	1 18	I NO	1 160	1 10	1 10
Hexach1 oroethane	11 20 1	10		ND 1	1 18	1 10	1 160	I ND	NØ.
Ris (2-Chloroethyl) Ether	11 - 1	31 1	The second of	3431	1 10	1 160	1 10	1 160	1 10
1, 2-8i chlorobanzewa	11 - 1	127 1	180 J	81.51	1 18	I ND	1 10	1 160	1 10
Nis (2-Chloroisopropyl) Ether	11 28 1	NB I	189 1	140	1 10	1 10	1 100	I NO	NØ
N-Mitrosodi-n-Propylasine	11 20 1	100	199 1	100	1 10	1 140	1 160	I ND	NO
Ni trobenzene	11 50 1	140	(/	160		1 160	1 140	1 140	HĐ
Hexachlorobut ad iene	11 29 1	100	196 1	ND I	1 18	I NO	1 140	1 140	NO
1, 2, 4-Trichlorobenzene	11 20 1	10	G-335/15	160		1 10	1 100	1 10	ND
Isophorone	11 - 1	28 1	198 (20/1	J 10	1 51	1 160	1 146	HD
Nashthal ene	11 - 1	25	189 1	28J1	1 18	7.2	6.5J	1 3.53	
his (2-Chloropthoxy) methans	11 20 1	140 1	1 188 1		1 19	1 100	1 160	1 10	1 16
Hexachlorocyclopent adiene	11 20 1	100 1		100	1 10	1 160	1 160	1 149	1 169
2—Chloronaphthaisme	11 28 1	149 1		NO I	1 10	1 140)	1 100	1 169	1 10
Acenaphthylene	11 28 1	MD I	1 199 1	MD I	1 18	1 16	1 160	1 160	NO NO
Acenaphthene	11 29 1	160	1 100 1		1 18	1 100	1 100	1 140	1 160
Disethyl Phthalate	11 28 1	160	1 188 1	100 1		1 10	1 140	1 10	1 160
2, 6-Bizitrotoluene	11 26	HØ 1		165 1	1 10-	1 160	1 100	1 10	1 160
F1 sorene	11 29 1				1 18	1 9.33	1 140	1 10	1 140
4-Chlorophanyl Phanyl Ether	11 29 1	NED I	The second second	160 1	1 18	1 169	1 140	1 149	148
2, 4-Bisitrotalume	11 28 1			160 1	1 18	1 145	1 10	1 140	1 160
Diethyl Phthalate	11 -	nı	199 1		1 10	1 165	1 16	1 140	1 140
N-Mi trosodi phenyl axine	11 -		1 180 1		1 19		1 10	1 189	1 149
Hexach1 orobenzene	11 29	18 1	1 100	100 1	1 18		1 140	1 140	1 140
+-Bromphanyl phanyl Ether	11 29	10 1	199	100	19	1 160	1 160	1 100	1 10
Phenenthrene	11 29	160 1	1 198 1	165	18	1 8.4	11 160	1 10	1 16
Anthracene	11 20	160	186	160	19 18		1 16	1 140	1 16
Bi-n-Butyl Phthelate	-11 -	31	198		11 18	1 16	1 4.8	6.5	

ug/1 denotes ppb

ug/al devetes pps

TABLE 8. ANALYTICAL RESULTS, BASE NEUTRAL AND ACID EXTRACTABLES

MASE NEUTRAL EXTRACTABLES	11	SØ I DETECTION I LIMIT I (ug/1) I	SB LANDFILL LEACHNTE (ug/1)	DETECTION I LIMIT I (ug/1) I			PERMEATE		I 1st PASS	I AFTER CONC. I 2nd PASS I (ug/1)
Fluoranthene	11	20 1	ND 1			1 10	1 140	I ND	1 160	I ND
Pyrrene	11-	20 1	HID I	186 1	NO I	1 16	1 140	I ND	I NO	I NO
Benzidine	—!!- !! —!!-	20 1	ND 1	186 1	ND 1	1 10	1 140	1 140	I NO	1 NO
Butyl Benzyl Phthalate	-11	20 1	ND I	100 1	140 1	1 10	J MD	1 140	1 140	I NO
Bis (2-Ethylhexyl) Phthalate	11	- 1	15JB1	100 1	85.30 (1 18	1 168	1 24.49	1 128	25.4
Chrysene	-11-	20 1	16D I	1 100 1	ND 1	1 18	1 140	1 160	1 HD	I NO
Beszo (a) Anthracene		20 1	ND I	180	ND I	1 10	1 165	1 165	1 140	I ND
1, 3 -Dichlorobenzidine	11	26 1	10	199 1	160 1	1 10	1 10	1 10	1 10	1 ND
Di-n-Octyl Phthalate	!!-	- 1	77	188	ND I	1 10	1 160	1 160	1 160	I NO
Senzo(b)Fluoranthene	11	28 1	ND i		160	1 19	1 140	I ND	1 140	1 ND
Benzo(k)Fluoranthene	11	20 1	HD I		NO I	1 18	1 160	I ND	1 160	1 140
Benzo(a) Pyrene	11	28 1	ND I		100 1	1 19	1 140	I MD	i NO	I NO
Indexo(1, 2, 3-c, d) Pyrese	11	28 1	ND I			1 19	I ND	1 160	1 160	1 ND
Dibenzo (a, h) Anthracene	! I	28 1	NO I	1 180 1		1 18	J NED	1 10	1 160	1 10
Benzo(ghi)Perylene	-11	20 1	NO I	1 198 1	160	1 10	1 145	1 160	1 160	1 160
N-Mitrosodisethylamine	11		ND I	1 169 1		10	1 140	1 140	1 140	I ND
CID EXTRACTABLES	OES SE	NICKS SPEKSON	and has to be first that the		the latest the same					
2-Chlorophenol	11	20	ND 1	1 180		11 10	1 160	1 140	s 146	1 10
2—Hi trophenol	11	20 1	HD I	1 190	160	10	3.03	I ND	1 NØ	I NO
Phenol	—!! —!!		935 1	1 188	366		1 160	1 5.00	73.8	1 124
2, 4—Bi wethylphenol	-11	- 1	345	1 190	63J		1 100	1 140	1 57	3.5
2,4-Bichlorophenol	11	29 1	ND I	1 180	10	11 19	1 160	1 160	1 160	1 10
2, 4, 6-Trichlorophenol	-11	29 1	160 1	1 106	I ND	11 10	1 145	1 145	1 16	1 10
4-Chiloro-3-Hethyl phenol	-11	28 1	100 1	1 188	I NO	11 18	1 145	1 16	1 145	1 140
2,4-Binitrophenol	-11	188	ND 1	1 500	1 160	11 50	1 16	1 10	1 140	1 10
2-Marthy1-4, 6-di ni trophenol	11	28	MD	188	140	11 10	1 145	1 140	1 10	1 10
Pewtachlorophenol		188	160	589	1 165	11 50	1 160	1 16	1 160	1 10
4-%i tropkenol	! I			1 189		11 10	1 160	1 160	1 10	1 10

TABLE 9. ANALYTICAL RESULTS, BASE NEUTRAL AND ACID EXTRACTABLES

BASE MEUTRAL & ACID EXTRACTABLES (tentatively identified compounds)	II SØ II II LENOFILL II II LENCHRTE II (ug/1) I	(ug/])	SI PAC/NF I PERMEATE IAFTER CONC. I (ug/1)	IAFTER CONC.	IAFTER CONC.	I AFTER CONC. I 2nd PASS I (ug/1)
4-Hethyl-2-Pentanone	11 2806 1		1 728	-	1 18	1 28
Toluene	11 3498 1	3490	1 -	1 -	-	1 -
M, N-Dimethyl Formamide	11 429 1	478	1 800	1 27	1 19	1 6.0
Chlorobenzene	11 440	690	1 -	-	l -	i -
Ethyl Benzene	11 2680	2500	1 -	1 -	i -	-
Xylene Isceer	11 3480	3908	-	1 -	4.0	1 6.0
Xylene Iscaer	11 350	1300	1 -	1 -	-	1 -
Benzenasine	1188	1488	-	ļ -	1 110	1 130
Hexanoic Acid	11 1580	-	1 -	-	i -	1 -
N-Marthyl-Benzenamine	11 4600	7200	-	-	1 170	1 170
M, M-Bimethyl-Benzeramine	11 6760	5800	1 52	1 -	1 18	-
Disethyl Phenol Iscser	11 630	-	1 -	i -	1 -	i -
Ethyl Phenol Isomer	11 370	-	1 -	i -	-	-
Trimethyl Phenol Isomer	11 110	-	-	! -	1 -	1 -
N-Methyl-N-Phenyl Formanide	11 360	-	1 -	i -	-	-
Disethylethyl Phenol Iscaer	11 529	1 240	i -	i -	-	-
N-Cyclohexyl Cyclohexamine	11 5180	-	i -	1 -	-	i -
Butanoic Acid	11 -	-	1 3880	1 38	1 78	1 100
Pentanoic Acid	11 -	-	1 120	1 -	1 -	1 -
1-Nethyl-2-Pyrrolidinone	11 -	1 1460	1 1160	1 -	1 4.0	1 6.0
Butamoic Acid Ambydride	11 -	-	-	1 150	1 -	-
Phenoxymethyl Oxirene	11 -	1 -	India-	1 7	1 4.0	j -
Bicyclo[4.2.0]Octa-1,3,5-Triene	- - -	386	1 -	i -	1 -	-
4-Nethyl Phenol	11 -	1 188	i -	i -	1 46	1 75
2-Ethyl-Haxanoic Acid	11 -	1 4100	i -	i -	1 -	-
Senzoic Acid		1 7600	i -	i -	1 15	7.6
Tetramethyl Butyl Phenol Isomer	11 -	1 110	i -	1 -	i -	i -
Methyl Phenol Isoser	-	-	-	-	1 9	16
3-Ethyl Phenol	11 -	-	-	-	i -	1 2:

ANALYTICAL RESULTS, METALS AND WET CHEMISTRY TABLE 10.

INCTRLS	11 SE 11 DETECTION 11 LINIT 11 (ug/1)	S9 1 LGNDFILL 1 LENDFRIE 1 (wg/1) 1	11 SS (2) 1 11 DETECTION 1 11 LINIT 1 11 (ug/1) 1	SS (2) LONDFILL LENCYRIE (Wg/1)	1151 SC 53 54 11 57 58 59 11 DETECTION 11 LIMIT ug/al	I SI PAC/NF I PENNENTE IPATEN CONC., I (ug/1)	1 SC POCLINE 1S3 PACLINE/A IPEDM, AFTER 1 AFT RECYC. INECYC, PRECO! BEF CONC. 1 (ug/1) 1 (ug/1)	9	ISA PAC/NF/RDI PENNERIE I AFTER CONC. I (ug/1)		ISB NO PERM. INFTER COMC. I 2nd PASS I (ug/1)	159 ROL, PFTER11 S6 1 154 PASS 11 IDETECTION 1 RETENTATE 11 LINUT 1 (ug/1) 11 (ug/1)	SE DETECTION LIMIT (ug/1)	1 96 NO PERM INFTER NECYC IREPONE CONC I (Mg/1)
Anti acey	11 2.0	2	11 2.0 1	3.9	11 2.6	3.6	1 371	ð	9	90	9	17.4 11	2.8	9
Arsenic		P.3	2.0	25.5	2	66	9.3	ð	9	9	9	. XG	2.8	9
Reryllius	11 5.8	2	2.8	9	8 4	9	9	9	9	9	9	9	es rd	9
Cadmium	-	16 11	24	9	8 rl	9	9	9	9	9	9	8	гi ээ	9
Calcium	-		588	883068	388	227886	226.000	1060	1786	4600	9996	3416888 11	198	1786
Chrosium		8.8	2.6	18.5 11	8	3.6	5.1	7.0	9	9	9	37.7 11	2.0	5.5
Copper	83	9	88	18	53	94	R	9	9	9	9	5846	28	9
Iran			188	997786	100	4378	11306	9	9	148	148	337866	166	9
Lead	- = :	2.7	2.8	16 11	e d	9	9	9	9	9	9	153	e d	eg 83
Mercury	65.38		11 6.2	9	11 6.2	9	9	9	9	9	9	8.3	8. 2	9
Mi che l	- = :	2138 11	- 48	2578	94	1620	1748	9	9	48	45	1646	97	9
Selentus	11 2.0		11 201	9	11 28	9	9	9	9	9	9	3.3.11	2.6	Ð
Silver		14 11	- 1	13 11	10	9	131	90	9	9	9	3¥	16	9
Thallien	-	2.011	11 2.8	2.311	11 2.0	9	9	9	9	9	9	9	2.8	Q
Zinc	-	1 828	138	242811	111 230	SK-281	43381	67881	24881	19781	13681	7278	200	1728
MET CAEDALSTRY		((sq/1)	1) (1,000/1) 1	(mg/1)	11 (mg/1)	((sq./1)	1 (mg/1) 1	(Egg/1)	(mg/1) §	(lag/1)	1 (mg/1)	1 (mg/1) 11	(mg/1) 1	(mg/1)
126		11 25.0 11	-	23 11	11 2.8	9	-	-	9	Ð	9	-		
106	- = :	1 4646 11		4698	-	3388	,		140	198	150		,	
700		1 878 1		266	-	3648		1	390	33	ភ	-	,	ı
9000		11930	-	21600 11	. = -	45888		,	1788	248	196	1	1	•
Phenols (Total)		9,460 11	,	1		-		1	,				,	ı
F1 schpoint	-	1) 150 F II			-	,	,	,	,		1		-	ā
£		6.311		,						1	,	-	,	,
SD4- (Sulfate)	,	-	-	9	6 11 5.0		.			20.00	16			,
Cyanides	,		- 38	9	38	1 112			9	9	9	:=	,	1

ANALYTICAL

RESULTS

Tables 6 through 10 summarizes the analytical data of the remedial investigation and the Phase I engineering study. The detailed analyses from Envirotech of Edison, NJ, the subcontract laboratory, are placed in Appendix 1. In addition, the full report containing chromatograms, QA/QC information, and miscellaneous details is maintained in the REAC archives for inspection.

DISCUSSION OF RESULTS

Reverse osmosis with or without powdered activated carbon and microfiltration pretreatment was very successful in removing organic and inorganic contaminants from the PAS landfill leachate. The effectiveness of removal was calculated as the difference between the original concentration of a constituent contaminant in the untreated leachate and the residual constituent in the permeate divided by the original concentration. Tables 11, 12, and 13 show that the PAC/MF/RO and the RO systems removed between 90 to 100 percent of most contaminants in the untreated leachate. If necessary, the contaminants unaffected by treatment can be eliminated by an inexpensive polish step, if necessary. Overall, the preliminary evaluation of the application of these technologies at the PAS site indicates a technically feasible treatment.

TABLE 11. TREATMENT EFFICIENCY OF VOLATILE ORGANICS

	11	Untreated Sample	11		TH	ENT	11		THENT	3.7.3.00.00
OLATILE ORGANICS	11 11 11	SS (2) LANDFILL LEACHATE (ug/1)	11	SI PAC/NF	ISI I A	4 PAC/MF/RC PERMEATE FTER CONC. (% Reject)	111	ST RO PERM. OFTER COMC. 1st PASS (% Reject)	ISB RO IAFTER I 2nd I (X Re	PERM. CONC. PASS eject)
Benzene	11	1000		94J	1	100	11	100	j	97.6
Chi or oben zene		768	11	100	,	100	11	100	ı	99. 6.
1,1-Dichloroethane	11	560	11		1	198	11	100	1	95.9
1,2-Dichloroethame	11	1100	11			100		84.5J		83.7
trans-1, 2-Dichloroetheme	11	17400	11	79.1		99.4	• •	78.4		76. 7
Ethyl Benzene	11	3400	11		1	100	11	100	1	99. 8
Methylene Chloride	11	25700	11	66.1	1	95.7	11	60.0	1	59.9
Tetrachloroethene	11	178.	111	188	1	100		188	1	100
Toluene		5910	7.07	98.7	•	100		98.9	•	99.6
1,1,1-Trichloroethane		258.		100		100	11	100		98. 6
Trichloroethene	11	180	111		į	100	11	100	1	98. 8
Vinyl Chloride	11	1800	11		1	100	11	56.8	1	
Xylenes (Total)	11	6698	11	100	ı	180	11	160	1	99.8
entatively identified compounds Acetone			11			81, 44		0 1		

ug/l denotes ppb

ug/al denotes popu

^{*} Based on Acetone concentration previously found in Sample 0; use values for qualitative purposes only.

TABLE 12. TREATMENT EFFICIENCY OF BASE NEUTRAL AND ACID EXTRACTABLES

	11	Untreated Sample	TREA	MF/RO THENT	11	TREA	SMOSIS (RO) THENT
ASE NEUTRAL EXTRACTABLES	11	SS (2) LANDFILL LEACHATE	SI PAC/NF PERMEATE AFTER CONC. (% Reject)	ISA PAC/NF/RO I PERMEATE IAFTER CONC. I (% Reject)	IIST R IIAFTE II 1s II (%	RO PERM. ER COMC. st PASS Reject)	ISB RO PERM. IAFTER CONC. I 2nd PASS I (% Reject)
Bis (2-Chloroethyl) Ether	11	34J11	100	1 100	11	100	
1,2-Dichlorobenzene	11	81311	100		11	180	1 100
Isophorone	11	59111	90J	1 188	11	100	1 100
Naphthalene	11	59111	64J		11	82.53	77,5
Ris (2-Ethylhexyl) Phthalate	11	85311	81.2		11	85.9	71.2
CID EXTRACTABLES							
Phenol	11	366 11	100	98.63	11	79.8	66.1
2,4-Dimethylphenol	11	63J11	100	1 100	11	96. BJ	1 99.4
ASE NEUTRAL & ACID EXTRACTABLES tentatively identified compounds)	# 22 SE						1040 F252222
4-Nethy1-2-Pentanone				J	ACCUPATION .		J
N, M-Disethyl Formamide		479 11	0	94.2	11	96.8	98.7
Xylene Isomer	11	3900 11	-	· -	11	99.9	99.8
Benzenamine	11	1400 11	-	3	11	92.1	90.7
H-Methyl-Benzenamine	11	7298 11	-		11	97.6	97.6
	11	5888 11	99.1	, , -	11	99.7	-
N, N-Disethyl-Benzenamine		5 1			.,	00.7	99.6
N, N-Dimethyl-Benzenamine 1-Methyl-2-Pyrrolidinone		1480 !!	21.4	l -	 	99.7	1
	"	1488 11		1 - 1 -		74.4	J

TREATMENT EFFICIENCY OF METALS AND WET CHEMISTRY TABLE 13.

	= = :	Untreated Sample	= = :		POWERED ACTIVATED WITH MICROFILTRATION and PEVERSE OSMOSIS TREATMENT (PAC/NF/RD)	ED WIT	H NICHOFIL	PAC/NF/RO)	===	REVER	MEVERSE DSMUSIS TREATMENT	
IN TRUS	====	SS (2) LANDFILL LENCHOTE (ug/1)		S2 PAC/NF EPM, AFTER RECYCLE (X Reject)	I SI PAC/NF I PENNESTE INFTER CONC.	====	3 PAC/NF/NC AFTER NECYCLE (X Reject)	PAC/NF/ROISA PAC/NF/ROII SG RO PERM AFTER I PERMEDIE IIAFTER RECYC ECYCLE IAFTER COMC. IIREFORE COMC (Reject) I (X Reject) II (X Reject)	III SG NO PERM IIAFTER RECYC IIAEFORE CONC II (X Reject)	157 RD PERM. 19FTER COMC. 1 1st PASS 1 (X Reject)	ISB RD PERM. IAFTER COMC. I 2nd PASS I (X Re yect)	1 SS, RD 1 RETBUTATE 1 1st PASS 1 (X Concert.)
Antiacny	= :		3.9 11	6.65	1 23.1	= :	168	186	11 100	1 1 100	106	9449
Arsenic	= =		25.5	71.4	1 69.5	= :	18	8.	188	100	186	366
Calcium	==	0003000	==	38.7	34.4	===	99.9	99.8	11 99.8	1 99.5	1 98.9	534
Chrossius	= :		18.5	72.4	1 69.7	=:	62.2	186	11 78.2	8	981	2963
Copper	= :		=:	23.1			18	8	2	31	186	1395
Iron	= =	99786	= =	88.7	35.6	=======================================	18	198	198	1 99.9	1 99.9	338
Lead	= :		16 11	2	281	= :	81		11 46.9	180	81	996
Mickel	= :		2578 11	23.3	23.2	= :	35	2	1880	38.1	1 98.2	948
Silver	= = = 		= :	6.66	186		36		188	100	100	353
Thallium	===		2.3 11	186	100		100	100	1186	180	106	9
linc	=		24.28	98		68	8		MB11 38.881	81 18.5	1 43.88	399968
INET CHEMISTRY	=	(I/tm)	=									
755	= :		11 83	,	198	100	,	1 166	-	1 166	1 166	-
TDS	= =		988	ı	1 31.3	1 = =	,	1 97.1	. = :	96	1 96.9	
100	= :		288					8.%	-	8.88	138	,
000			21.00 11	1				19.8	- = -	1 88.6	91.0	,
SO4- (Sulfate)	==		1 9	,	-	=	,		-	69	60	

FUTURE PLANS

TECHNICAL EVALUATION

All information generated from the pilot-scale treatability studies performed at Environment Canada will be evaluated to determine the technical viability of each treatment alternative examined. Factors considered will include rejection rates, permeate and retentate generation rates, acceptability of permeate for discharge or reinjection, constraints on retentate disposal, etc. For those technologies deemed technically viable, ERT will perform economic feasibility study. For those deemed technically inappropriate, ERT will discontinue the evaluation effort.

ECONOMIC FEASIBILITY

For each treatment technology where the pilot-scale studies successfully demonstrate the technical application, a detailed cost analysis will be performed. The purpose of this evaluation is to establish that a treatment option is economically feasible <u>before</u> conducting a full-scale, on-site treatability study. Factors considered in this evaluation include disposal costs for concentrated wastes versus dilute wastes, capital costs of treatment units, utility costs, manpower requirements, equipment maintenance, sampling costs, chemical costs, etc. The on-site treatability study will be performed if, and only if, a treatment technology is both technically and economically acceptable.

MONITORING WELL INVESTIGATION AT POLLUTION ABATEMENT SERVICES, OSWEGO, NEW YORK

INTRODUCTION

To date, REAC has completed a detailed investigation of the groundwater monitoring wells at the Pollution Abatement Services (PAS) site. The investigation consisted of three main phases. The first phase involved an initial site survey and the sampling of selected wells on and off the site. The work was completed between 22 November and 25 November 1987. The second phase, from 4 January to 9 January 1988, consisted of a down-hole camera investigation and the execution of bail tests at six of the 18 selected wells. During the third phase, from 26 January to 30 January 1988, the remaining 12 wells were investigated and bail tested. The following is a summary of this work with recommendations for additional work needed at the site.

FIELD INVESTIGATIONS

Figure 10 is a detailed map of the PAS site showing the configuration of the slurry wall, the position of the chain link fence surrounding the property, and the locations of the monitoring wells and the leachate pumping wells. There are several main groups of wells at the site. Wells labeled "LC" are the leachate collection wells. The monitoring wells labeled "SWW" were installed by URS Company (Hacker, 1987) after the emplacement of the slurry wall. They were installed for the purpose of monitoring the performance of the leachate collection system by comparing the water chemistry on opposite sides of the slurry wall. The outer wells are also used to monitor the slurry wall integrity. Wells labeled "MW" were installed by Woodward-Clyde Consultants (Versar, 1987). This group consists of an upgradient couplet (MW11A and MW11B), two single wells (MW9 and MW10), and a downgradient couplet (MW7 and MW7B). There is also a triplet labeled "IM" at the northwest corner of the site, a triplet labeled "2" near the northeast corner of the site, and a couplet labeled "NP" near the northeast corner of the site. There is one isolated well labeled "IP" near the northeast corner.

Table 14 is a summary of the data collected during this investigation. Water samples were collected during the first phase of this investigation. Versar (1987) reported significant contamination in SWW4 and SWW6. Our chemical data indicates only moderate contamination in SWW4 (total VOA = 183 ug/l, total BNA = 24 ug/l), however, matrix interference may have resulted in low values for this well (Chang, 1988). SWW6 is definitely contaminated. The total for VOAs is 2974 ug/l and the total for BNAs is 1330 ug/l. The primary volatile organic compounds are methylene chloride, chloroform, bromochloromethane, benzene, and toluene. The most prominent base/neutral/acid extractable compounds are 2,4 dimethylphenol and 1,2 dichlorobenzene. The concentrations of these chemicals in this well indicate that the slurry wall has been breached in this area.

Table 14

WELL #	CONDITION	IAMETER	DEPTH (ft)	SCREEN (ft)	VOA (ug/L)	BNA (P)	WATER TABLE
						(uy1L)	
MW118	Kinked, rusty cracked, scale	3	41.3	31.4-41.3' Open Hole	40.3	0	
MW11A	Corroded, needs flushing	3	10.8	6.8-10.8	172	0	282.3
sww1	Clean Well	3	19.7	9.2-19.7'			278.1
SWW2	Surface scum clean screen	3	17.6	9.1-17.6			270.9
SWW3	Needs flushing	3	19.6	10.6-19.6			266.5
SWW4	Clean screen good condition	3	25.4	15.4-25.4	183	24	266.4
SWW5	Corroded casing clean screen	3	21.4	11.4-21.4		-	264.3
SWW6	Clean screen good condition	3	17.0	7.3-17.0	2974	1330	264.0
IP	Good condition	4	52.6	Open Hole 18.1-52.6	344	0	267.8
os-1M	Good condition	3	14.7	5.7-14.7	32	0	259.8
01-1M	Needs flushing	3	27.2	22.2-27.2	4	0	256.8
OD - 1M	Casing encruste rock in hole	ed 4.1	42.6	Open Hole	62 om	0	258.0
MW7A	Needs flushing or rebuilding	3	18.6	14.9-18.6	10.2	0	
MW7B	Needs flushing	3	25.4	20.4-25.4	7.3	33.1	
08-2	Good condition	3	17.7	6.9-17.7	5.8	0	261.1
01-2	Needs some flushing	3	21.1	15.1-21.1	6	0	260.0
00-2	Good condition	4	73.4	Open Hole 28.1-73.4		0	254.0
MW10	Need flushing	3	13.43	8.3-13.43	13.1	0	272.0

The condition of the monitoring wells was investigated during the second and third phases of this project. A subcontractor (Geoprobe, Inc.) was hired to examine the wells with a down-hole camera. The condition of the well was examined with a video monitor and was recorded on videotape. The videotape logs are shown in Appendix 2. The "MW" wells were generally found to be in poor condition. MW11B is severely rusted and the casing is bent. MW11A is corroded and needs flushing. MW7A and MW7B are corroded to the extent that the integrity of the chemical data from these wells is dubious. Wells SWW3, OI-1M, OI-2, and MW10 are all in fair condition except for the fact their screens are clogged with sediment. This problem could be easily solved by flushing the wells.

Bail tests were performed on all the wells investigated at this site. A pressure transducer was connected to a digital data recorder and lowered to a depth of 10 to 15 ft below the surface of the water. The base level was recorded at that point. A bailer was then lowered into the well and a second base level was recorded. The bailer was then swiftly removed from the well and the water recovery was monitored and recorded on magnetic tape. The value of the hydraulic conductivity (k) was determined using the Hvorslev (1951) method. The recovery data is graphically displayed in Appendix 3. Table 15 shows the results for several of the wells at the site. SWW6 shows a very low flow velocity (0.0095 ft/day). Assuming that the well is about 5 ft from the slurry wall and that the breach in the wall is very close to SWW6, it would take the contaminants approximately 1.5 years to reach the well. The high flow velocity value for OD2 is a manifestation of fracture flow in the bedrocks.

CONCLUSIONS

Several wells at the PAS site need complete replacement. MW11A, MW11B, MW7A, and MW7B are so highly corroded that the chemistry of the groundwater samples may be significantly influenced by the poor conditions of the well casings. The video logs indicate that the screens in SWW3, OI-1M, OI-2, and MW10 are substantially clogged. These well need to be flushed before the aquifer parameters can be accurately determined. Figure 1 shows that there is a lack of monitoring wells just outside the slurry wall on the northwest side of the site. Additional wells should be installed in this area to test the integrity of the slurry wall.

Table 15 **VELOCITY CALCULATIONS**

v = [k (dh/d1)]/(7.48 m)

dh/dl = hydraulic gradient (ft/ft) n = porosity k = hydraulic conductivity (gpd/ft²)7.48 = conversion factor (gpd/ft² -- ft/day)

WELL	dh/dl	n	k (gpd/ft ²)	v (ft/day)
SWW1	0.023	0.46	42.13	0.28
SWW6	0.023	0.46	1.42	0.0095
MW7B	0.023	0.46	34.7	0.23
0S2	0.023	0.46	14.2	0.95
OD2	0.023	0.46	240	1.60

REFERENCES

Chang, J., 1988. Analytical Report, Pollution Abatement Services Site, Oswego, NY. EPA Work Assignment #0-60.

Hacker, G., 1987. Draft Letter Report, Sampling and Analysis, Pollution Abatement Services Site. EPA Work Assignment #212.

REAC SUPPORT ORGANIZATION GSA RARITAN DEPOT WOODBRIDGE AVENUE BUILDING 209, BAY F EDISON, NJ 08837 PHONE: 201-906-0369

TO:

Tom Kady, U.S. Environmental Protection Agency,

Environmental Response Team

FROM:

Robert Evangelista, REAC

SUBJECT:

PRELIMINARY ECONOMIC ANALYSIS FOR THE PROPOSED TREATMENT SYSTEMS

AT THE POLLUTION ABATEMENT SERVICES SITE, OSWEGO, NY

DATE:

17 May 1988

cc:

File 3347-01-01-1083

This preliminary economic analysis was performed by the Response Engineering and Analytical Contractor (REAC) for the U.S. Environmental Protection Agency's Environmental Response Team (ERT) as a part of Work Assignment 0-83. This work assignment is exploring the use of innovative on-site treatment technology to reduce off-site treatment cost at the Pollution Abatement Services site (PAS) in Oswego, NY. PAS has been treating approximately 65,000 gallons of landfill leachate per month (780,000 gallons/year) at an off-site facility. According to the former U.S. EPA On-Scene Coordinator, Bret Hensley, the cost of treatment is \$0.31/gallon (approximately \$241,000/year). The overall objective of the project is to reduce treatment cost by exploring the selected appropriate technology - reverse osmosis. The objective of this preliminary economic analysis is to determine if additional on-site pilot efforts are warranted from an economic perspective.

Preliminary pilot tests at Environment Canada's Ottawa, Ontario facility in February 1988 demonstrated the technical feasibility of reverse osmosis and powdered activated carbon/microfiltration/reverse osmosis to reduce the amount waste transported and treated off-site. An on-site pilot test at PAS is necessary to explore the following items:

- The technical feasibility of extended operation with the PAS leachate;
- o The maximum amount that the leachate can be concentrated (minimized);
- The treatment process parameters necessary for system design.

This effort looked at eight treatment systems - 4 manually operated and 4 fully automated. Systems 1, 1-A, 2, and 2-A were evaluated. They are a 10 gallon per minute (GPM) reverse osmosis system, similar in design to

Environment Canada's mobile reverse osmosis system, differ in materials of construction and level of automation with system 1 containing plastic hose, plumbing, and fittings and system 2 stainless steel. The "A" suffix denotes fully automated system. Environment Canada has nearly a decade of experience with this system. Systems 3 and 3-A are small pilot-scale reverse osmosis system which a 2.5 GPM capacity (with a range of 0.8 to 5 GPM). Smaller systems were explored because the approximately 65,000 gallons of leachate treated each month off-site equates to approximately 1.5 GPM on an around-the-clock basis. Therefore, a continuously operated small system is a feasible option. Finally, Systems 4 and 4-A is a reverse osmosis unit with a powdered activated carbon/microfiltration pretreatment. Environment Canada is currently exploring this technology combination and recommended its inclusion in pilot tests.

This analysis comprises three sections: 1) a summary, 2) an economic estimate, and 3) calculations. The summary section allows an at-a-glance review of the economic estimates for all eight systems. The economic estimate gives a detailed breakdown of the operating and capital costs, an annual savings (or loss) versus off-site treatment, and the return on investment for the system. The calculations section gives the assumptions and shows the derivation of the numbers used in the economic estimate.

I recommend additional reverse osmosis pilot testing, on-site, to further explore the technical feasibility to concentrate leachate and to get a more accurate economic estimate of the treatment costs. Systems 1, 2, and 3 have the best return on investments ranging from 1.7 to 2.6 years. The return on investment of the fully automated versions of these systems (1-A, 2-A, and 3-A) a more than double the manual systems. Although an attractive option, the added automation may not be necessary to treat PAS leachate or any other aqueous CERCLA wastes. Systems 4 and 4-A provide no return on investment because the cost is greater than off-site treatment. However, EPA/ERT may consider doing additional pilot test with this technology combination to further its development.

CAPITAL EQUIPMENT ECONOMIC ESTIMATE

SUMMARY OF PRELIMINARY ECONOMIC ANALYSIS FOR THE PROPOSED TREATMENT SYSTEMS AT THE POLLUTION ABATEMENT SERVICES SITE, OSWEGO, NY

SYSTEM 1 Mobile Reverse Osmosis with Hose Plumbing

Capacity: 10 GPM (approximate)
Capital Cost: \$104,700
Operating Cost: \$0.2423/gallon
Annual Savings (loss): \$52,806
Return on Investment: 2.0 years

SYSTEM 1-A Mobile Reverse Osmosis with Hose Plumbing and Full Automation

Capacity: 10 GPM (approximate)
Capital Cost: \$309,700
Operating Cost: \$0.2342/gallon
Annual Savings (loss): \$59,116
Return on Investment: 5.2 years

SYSTEM 2 Mobile Reverse Osmosis with Stainless Steel Plumbing

Capacity: 10 GPM
Capital Cost: \$139,300
Operating Cost: \$0.2415/gallon
Annual Savings (loss): \$53,430
Return on Investment: 2.6 years

SYSTEM 2-A Mobile Reverse Osmosis with Stainless Steel Plumbing and Full Automation

Capacity: 10 GPM
Capital Cost: \$344,300
Operating Cost: \$0.2331/gallon
Annual Savings (loss): \$59,982
Return on Investment: 5.7 years

SYSTEM 3 Mobile Reverse Osmosis

Capacity: 2.5 GPM
Capital Cost: \$59,600
Operating Cost: \$0.2644/gallon
Annual Savings (loss): \$35,568
Return on Investment: 1.7 years

SYSTEM 3-A Mobile Reverse Osmosis with Full Automation

Capacity: 2.5 GPM

Capital Cost: \$264,600 Operating Cost: \$0.2169/gallon Annual Savings (loss): \$72,618 Return on Investment: 3.6 years

SYSTEM 4
Mobile Powdered Activated Carbon/
Microfiltration and Reverse Osmosis

SYSTEM 4-A Mobile Powdered Activated Carbon/ Microfiltration and Reverse Osmosis with Full Automation

Capacity: 10 GPM
Capital Cost: \$183,400
Operating Cost: \$0.3148/gallon
Annual Savings (loss): (\$3,744)
Return on Investment: ----

Capacity: 10 GPM
Capital Cost: \$488,400
Operating Cost: \$0.3283/gallon
Annual Savings (loss): (\$14,274)
Return on Investment: ----

SYSTEM 1. MOBILE REVERSE OSMOSIS (with hose plumbing) Capacity = 10 GPM (approximate)

<u>Items</u>	Cost Per Gallon Treated	
Equipment Maintenance Equipment Depreciation Membrane Replacement Electric & Chemicals Labor Sample Analysis Concentrate Treatment	\$0.0064 0.0105 0.0108 0.0133 0.0400 0.0128 0.1000	
Subtotal ERCS Cost Contingency (15%)	\$0.1938 0.0194 0.0291	
Total Operating Cost		\$0.2423
Current Treatment Cost at Offsi Reverse Osmosis Treatment Cost	te Facility \$0.3100 0.2423	
Savings per Gallon		\$0.0677
Annual Savings		\$52,806
CAPITAL COST		
<u>Items</u>	Cost	
Mobile Reverse Osmosis System w hose plumbing Mobilization & Start-up Membranes Support Equipment Plumbing (installed) Electrical (installed)	\$57,700 10,000 12,600 14,400 5,000 5,000	
Total Capital Cost		\$104,700
RETURN ON INVESTMENT		2.0 years

SYSTEM 1-A. MOBILE REVERSE OSMOSIS (with hose plumbing and full automation) Capacity = 10 GPM (approximate)

<u>Items</u>	Cost Per Gallon Treated	
Equipment Maintenance Equipment Depreciation Membrane Replacement Electric & Chemicals Labor Sample Analysis	\$0.0128 0.0362 0.0108 0.0133	
Concentrate Treatment Subtotal ERCS Cost Contingency (15%)	0.1000 \$0.1874 0.0187 0.0281	
Total Operating Cost		\$0.2342
Current Treatment Cost at Off Reverse Osmosis Treatment Cos		
Savings per Gallon		\$0.0758
Annual Savings		\$59,116
CAPITAL COST		
<u>Items</u>	Cost	
Mobile Reverse Osmosis System hose plumbing Reverse Osmosis Automation Mobilization & Start-up Membranes Support Equipment Plumbing (installed) Electrical (installed)	\$ 57,700 200,000 15,000 12,600 14,400 5,000	
Total Capital Cost		\$309,700
RETURN ON INVESTMENT		5.2 years

SYSTEM 2. MOBILE REVERSE OSMOSIS (with stainless steel plumbing) Capacity = 10 GPM (approximate)

Equipment Maintenance Equipment Depreciation Membrane Replacement Electric & Chemicals Labor Sample Analysis Concentrate Treatment	\$0.0013 0.0150 0.0108 0.0133 0.0400 0.0128 0.1000 \$0.1932 0.0193 0.0290	\$0.2415
Subtotal	0.0193 	\$0.2415
ERCS Cost Contingency (15%)		\$0.2415
Total Operating Cost		
Current Treatment Cost at Offsite Facility Reverse Osmosis Treatment Cost	\$0.3100 0.2415	
Savings per Gallon		\$0.0685
Annual Savings		\$53,430
CAPITAL COST		
<u>Items</u>	Cost	
Mobile Reverse Osmosis System with stainless steel plumbing Mobilization & Start-up Membranes Support Equipment Plumbing (installed) Electrical (installed)	\$92,300 10,000 12,600 14,400 5,000	
Total Capital Cost		\$139,300
RETURN ON INVESTMENT		2.6 years

SYSTEM 2-A. MOBILE REVERSE OSMOSIS (with stainless steel plumbing and full automation) Capacity = 10 GPM (approximate)

<u>Items</u>	Cost Per Gallon Treated	
Equipment Maintenance Equipment Depreciation Membrane Replacement Electric & Chemicals Labor Sample Analysis Concentrate Treatment	\$0.0077 0.0406 0.0108 0.0133 0.0192 0.1000	
Subtotal ERCS Contingency (15%)	\$0.1916 0.0192 0.0287	
Total Operating Cost		\$0.2331
Current Treatment Cost at Off-Site Reverse Osmosis Treatment Cost	Facility \$0.3100 0.2331	
Savings Per Gallon		\$0.0769
Annual Savings		\$59,982
CAPITAL COST		
<u>Items</u>	Cost	
Mobile Reverse Osmosis System With Stainless Steel Plumbing Reverse Osmosis Automation Mobilization & Start-up Membranes Support Equipment Plumbing (installed) Electrical (installed)	\$ 92,300 200,000 15,000 12,600 14,400 5,000	
Total Capital Cost		\$344,300
RETURN ON INVESTMENT		5.7 years

SYSTEM 3. MOBILE REVERSE OSMOSIS Capacity = 2.5 GPM (approximate)

<u>Items</u>	Cost Per Gallon Treated	
Equipment Maintenance Equipment Depreciation Membrane Replacement Electric & Chemicals Labor Sample Analysis Concentrate Treatment	\$0.0013 0.0060 0.0088 0.0133 0.0700 0.0128 0.1000	
Subtotal ERCS Contingency (15%)	\$0.2115 0.0212 0.0317	
Total Operating Cost		\$0.2644
Current Treatment Cost at Off-S Reverse Osmosis Treatment Cost	Site Facility \$0.3100 	
Saving Per Gallon		\$0.0456
Annual Savings		\$35,568
CAPITAL COST		
<u>Item</u>	Cost	
Mobile Reverse Osmosis System (Mobilization & Start-up Membranes Support Equipment Plumbing (installed) Electrical (installed)	(used) \$24,000 10,000 3,200 13,400 4,000 5,000	
Total Capital Cost		\$59,600
RETURN ON INVESTMENT		1.7 years

SYSTEM 3-A. MOBILE REVERSE OSMOSIS Capacity = 2.5 GPM (approximate)

<u>Items</u>	Cost Per Gallon Treated	
Equipment Maintenance Equipment Depreciation Membrane Replacement Electric & Chemicals Labor Sample Analysis Concentrate Treatment	\$0.0077 0.0316 0.0081 0.0133 0.0128 \$0.1000	
Subtotal ERCS Contingency (15%)	\$0.1735 0.0174 0.0260	
Total Operating Cost		\$0.2169
Current Treatment Cost at O Reverse Osmosis Treatment C		
Saving Per Gallon		\$0.0931
Annual Savings		\$72,618
CAPITAL COST		
<u>Item</u>	Cost	
Mobile Reverse Osmosis Syst Reverse Osmosis Automation Mobilization & Start-up Membranes Support Equipment Plumbing (installed) Electrical (installed)	tem (used) \$ 24,000 200,000 15,000 3,200 13,400 4,000 5,000	
Total Capital Cost		\$264,600
RETURN ON INVESTMENT		3.6 years

SYSTEM 4. MOBILE POWDERED ACTIVATED CARBON/MICROFILTRATION AND REVERSE OSMOSIS (RO with stainless steel plumbing) Capacity = 10 GPM

<u>Items</u>	Cost Per Gallon Treated	
Equipment Maintenance Equipment Depreciation Membrane Replacement Electric & Chemicals Powdered Activated Carbon Labor Sample Analysis Carbon Treatment Concentrate Treatment	\$0.0077 0.0200 0.0121 0.0200 0.0392 0.0400 0.0128 NA 0.1000	
Subtotal ERCS Contingency (15%)	\$0.2518 0.0252 0.0378	
Total Operating Cost		\$0.3148
Current Treatment Cost at Off-Site Fa Reverse Osmosis Treatment Cost	\$0.3100 0.3148	
Saving Per Gallon		(\$0.0048)
Annual Savings		(\$3,744)
CAPITAL COST		
<u>Item</u>	Cost	
Mobile Reverse Osmosis System with Stainless Steel Plumbing Microfiltration Mobilization & Start-up Membranes Support Equipment Plumbing (installed) Electrical (installed)	\$ 92,300 23,000 15,000 12,600 25,500 7,500 7,500	
Total Capital Cost		\$183,400
RETURN ON INVESTMENT		

SYSTEM 4-A. MOBILE POWDERED ACTIVATED CARBON/MICROFILTRATION AND REVERSE OSMOSIS (fully automated) Capacity = 10 GPM

<u>Items</u>	Cost Per Gallon Treated	
Equipment Maintenance Equipment Depreciation Membrane Replacement Electric & Chemicals Powdered Activated Carbon Labor Sample Analysis Carbon Treatment Concentrate Treatment	\$0.0205 0.0580 0.0121 0.0200 0.0392 0.0128 NA 0.1000	
Subtotal ERCS Contingency (15%)	\$0.2626 0.0263 0.0394	
Total Operating Cost		\$0.3283
Current Treatment Cost at Off Reverse Osmosis Treatment Cos		
Saving Per Gallon		(\$0.0183)
Annual Savings		(\$14,274)
CAPITAL COST		
<u>Item</u>	Cost	
Mobile Reverse Osmosis System Stainless Steel Plumbing MF & RO Automation Microfiltration Mobilization & Start-up Membranes Support Equipment Plumbing (installed) Electrical (installed)	\$ 92,300 300,000 23,000 20,000 12,600 25,500 7,500 7,500	
Total Capital Cost		\$488,400
RETURN ON INVESTMENT		

CALCULATIONS

FOR

ECONOMIC ESTIMATE

CALCULATIONS FOR SYSTEMS 1 AND 1-A

			Cost
			(based on
System	<u>Item</u>	Cost Calculations	780,00 gal/yr)
1	Equipment	equipment = \$5,000/yr	\$0.0064/gal
1-A	maintenance ^a	[equipment] \$5,000/yr + [automation] \$5,000/yr = \$10,000/yr	\$0.0128/gal
1	Equipment	(\$104,700 - 12,600 - 10,000)/10 = \$8,210/yr	\$0.0105/gal
1-A	depreciation	(\$309,700 - 12,600 - 15,000)/10 = \$28,210/yr	\$0.0362/gal
1	Membrane	(12 elements/1.5 yrs life) x (\$1050/element) - \$8,400/yr	\$0.0108/gal
1-A	replacement ^C	same as 1	\$0.0108/gal
1	Electric &	(50/day) x (4 days/wk) x (52 wks/yr) = \$10,400/yr	\$0.0133/gal
1-A	chemicals ^d same as 1		
1	Labor ^e	(\$150 salary/8 hr day) x (4 days/wk) x (52 wks/yr) - \$31,200/yr	\$0.0400/gal
1-A		none	
1	Sample Analysis	(10 VOA, BNA, pp Metal analyses per year) x \$1,000/analysis = \$10,000/yr	\$0.0128/gal
1-A		same as 1	
1	Concentrate	78,000 gal/yr x \$1.00/gal = \$78,000/yr	\$0.100/gal
1-A	treatment [†]	same as 1	
1	Reverse Osmosis	unit = \$57,700	
1-A	Uni t ⁹	[unit] \$57,700 + [automation] \$200,000 = \$257,700	
1	Mobilization &	[unit] \$5,000 + [Murphy's Law] \$5,000 = \$10,000	
1-A	Start-uph	[unit] \$5,000 + [automation] \$5,000 + [Murphy's Law] \$5,000 = \$15,000	
1	Membrane ^g	(12 membrane elements/RO unit) x ($$1050/element$) = $$12,600$	
1-A		same as 1	
1	Support	2 vapor-phase carbon units for tank vents (Tigg, Inc.)	\$ 1,000
1-A	Equipment 1	2 S.S., 55-gal tanks for chemicals (General Container)	\$ 1,000
		2 1000-gal tanks for feed and permeate (General Container)	\$ 3,000
		1 25' x 8' trailer (Gelco Space)	\$ 5,000
		Pumps (Veasey and Murphey)	\$ 4,400
			\$14,400
1	Plumbing	\$5,000	
1-A	(installed)	\$5,000	
1	Electrical	\$5,000	
1-A	(installed)	\$5,000	

CALCULATIONS FOR SYSTEMS 2 AND 2-A

			Cost
			(based on
System	<u>Item</u>	Cost Calculations	780,00 gal/yr)
2	Equipment	equipment = \$1,000/yr	\$0.0013/gal
2-A	maintenance ^a	[equipment] \$1,000/yr + [automation] \$5,000/yr = \$6,000/yr	\$0.0077/gal
2	Equipment	(\$139,700 - 12,600 - 10,000)/10 = \$11,670/yr	\$0.0105/gal
2-A	depreciation ^b	(\$344,300 - 12,600 - 15,000)/10 = \$31,670/yr	\$0.0406/gal
2	Membrane	See 1 and 1-A	
2-A	replacement ^C		
2	Electric &		
2-A	chemicals ^d	See 1 and 1-A	
2	Labor ^e	See 1 and 1-A	
2-A			
2	Sample Analysis	See 1 and 1-A	
2-A			
2	Concentrate		
2-A	treatment	See 1 and 1-A	
2	Reverse Osmosis	unit = \$92,300	
2-A	Uni t ⁹	[unit] \$92,300 + [automation] \$200,000 = \$292,000	
2	Mobilization &		
2-A	Start-uph	See 1 and 1-A	
2	Membrane ^g	See 1 and 1-A	
2-A			
2	Support	See 1 and 1-A	
2-A	Equipment i		
2	Plumbing/	See 1 and 1-A	
2-A	Electrical		

(installed)

CALCULATIONS FOR SYSTEMS 3 AND 3-A

System	<u>Item</u>	Cost Calculations	Cost (based on 780,00 gal/yr)
3	Equipment		
3-A	maintenance ^a	See 2 and 2-A	
3	Equipment	(\$59,600 - 3,200 - 10,000)/10 = \$4,640/yr	\$0.0060/gal
3-A	depreciationb	(\$264,600 - 3,200 - 15,000)/10 = \$24,640/yr	\$0.0315/gal
3	Membrane	(3 elements/0.5 year life) x (\$1050/element) = \$6,300	/yr \$0.0081/gal
3-A	replacement ^k	Same as 3	\$0.0081/gal
3	Electric &	See 1 and 1-A	
3-A	chemicalsd		
3 3-A	Labor ^e	(\$150/8hr day) x (7 day/wk) x (52 wk/yr) = \$54,600/yr None	\$0.0700/gal
3 3-A	Sample Analysis	(See 1 and 1-A)	
3	Concentrate		
3-A	treatment ^f	(See 1 and 1-A)	
3 3-A	Reverse Osmosis Unit ⁹	unit [used] = \$24,000 [unit ,used] \$24,000 + [automation] \$200,000 = \$224,0	000
3-4	onic	[unit , used] \$24,000 + [advanation] \$200,000 - \$224,0	
3	Mobilization &	(See 1 and 1-A)	
3-A	Start-uph		
3	Membrane ^g	(3 membranes/RO unit) x ($$1050/element$) = $$5,200$	
3-A		(Same as 3)	
3	Support .	2 vapor-phase carbon units for tank vents (Tigg, Inc.	\$ 1,000
3-A	Equipment ¹	2 S.S., 55-gal tanks for chemicals (General Container	
		2 1000-gal tanks for feed and permeate (General Conta 1 25' x 8' trailer (Gelco Space)	\$ 2,400 \$ 5,000
		Pumps (Veasey and Murphey)	\$ 4,000
			total \$13,400
3	Plumbing ^j	\$4,000	
3-A	(installed)	\$4,000	
7	Electric	000 29	
3 3-A	(installed)	\$5,000 \$5,000	
3-7	(matatted)	*7,000	

CALCULATIONS FOR SYSTEMS 4 AND 4-A

					Cost (based on
System	Item	Cost Calculations			780,00 gal/yr)
4	Equipment	[RO] \$5,000 + [MF] \$1,000 = \$6,000/yr			\$0.0077/gal
4-A	maintenance ^{a, l}	[RO] \$5,000 + [MF] \$1,000 + [RO MF autor	mation] \$10,000 = \$16	s,000/yr	\$0.0205/gal
4	Equipment	(\$168,400 - 12,600 - 15,000)/10 = \$15,58			\$0.0200/gal
4-A	depreciation ^b	(\$448,700 - 12,600 - 20,000)/10 = \$15,58	30/yr		\$0.0580/gal
4	Membrane	(12 RO elements/1.5 yr life) x (\$1,050/6	elements) + \$1,000/y	for MF = $$9,400/yr$	\$0.0121/gal
4-A	replacement ^C	Same as 4			
4	Electric &	[(\$25/MF day) + (\$50/RO day)] x (4 day/	wk) x (52 wk/yr) = \$	15,600	\$0.0200/gal
4-A	chemicals ^h	Same as 4			
4	Powdered				
	Activated	(5g/liter leachate) x (3.785l/gal) x (1		gal/yr	\$0.0392/gal
4-A	Carbon ^M	x (\$0.94/lb) = \$30,600/yr 4	-A same as 4		\$0.0392/gal
4	Labor	See 1 and 1-A			
4-A					
4	Sample	See 1 and 1-A			
4-A	Analysis				
4	Carbon	Not Available			
4-A	Treatment				
4	Concentrate	See 1 and 1-A	,		
4-A	Treatment				
4	Reverse Osmosis	See 2 and 2-A			
4-A	Unit				
4	Microfiltration ⁹	unit = \$23,000			
4-A					
4	Mobilization &	[RO] \$10,000 + [MF] \$5,000 = \$15,000			
4-A	Start-uph	[RO] \$10,000 + [MF] \$5,000 + [automatio	n] 5,000 = \$20,000		
4	Membranes	For RO membranes See 1 and 1-A; MF memb	ranes included in un	it cost	
4-A					
4	Support .	3 vapor-phase carbon units for tank ven	its (Tigg, Inc.)	\$ 1,500	
4-A	Equipment 1	4 S.S. 55-gal tanks for chemicals (Gene		\$ 2,000	
		4 1000-gal tank for feed and permeate (General Container)	\$ 6,000	
		2 25' x 8' trailers (Gelco Space)		\$10,000	
		Pumps	0.15.44.1	\$ 6,000	
,	n i	¢7 500	SUBTOTAL	\$25,500	
4	Plumbing ^J	\$7,500 \$7,500			
4-A	(installed) Electric ^j	\$7,500 \$7,500			
4-A	(installed)	\$7,500			
4-14	(matatted)				

FOOTNOTES

- equipment maintenance estimated by Sepratek, Ottawa, Ontario; automation maintenance estimated by REAC.
- b 10 year straight-line depreciation (total capital cost membrane cost mobilization & start-up)/10.
- 1.5 yr membrane life based on 6 month expected life operated 24 hours/day; 6 month life estimated by Filmtec, Inc.
- d electric & chemical estimated by Environment Canada.
- 4 day work week based on treated 65,000 gal/month at 10 GPM = 13.5 8-hr days plus 2.5 days cleaning time.
- f concentrations ratio = 10 and off-site treatment cost of concentrate estimated by REAC.
- g unofficial quote by Sepratek.
- h estimated by Environment Canada and REAC.
- i unofficial quotes.
- j estimated by REAC.
- 6 month expected life when operated 24 hours/day estimated by Filmtec.
- 1 microfiltration maintenance estimated by REAC.
- m estimated by Environment Canada.

RO AND PAC/MF/RO

SYSTEM MASS BALANCE

(based on a priority pollutants + 40 scan and assuming 780,000 gallons per year to be treated) REVERSE OSMOSIS TREATMENT SYSTEM MASS BALANCE

PP = Priority Pollutant BNA = Base Neutral/Acid Extractable NA = Not Available

rd/EVNGLSTA/CHART

(based on a priority pollutants + 40 scan and assuming 780,000 gallons per year to be treated) POWDERED ACTIVATED CARBON/MICROFILTRATION/REVERSE OSMOSIS SYSTEM MASS BALANCE

PP = Priority Pollutants NA = Not Available

BNA = Base Neutral/Acid Extractable

rd/EVNGLSTA/CHART