

Association of Engineering Geologists 1992-Annual Meeting Hosted by the AEG Southern California Section

Groundwater Monitoring and Remediation Techniques Short Course

Monday - October 5, 1992 - 8 Hours Duration Sheraton Long Beach Hotel, 333 E. Ocean Boulevard, Long Beach, California

Instructors

Kelly E. Rowe, C.E.G. Victor E. Harris, C.E.G. Donn Marrin, Ph.D. Robert Evangelista

Certificate of Appreciation

The Southern California Section of the Association of Engineering Geologists

Serving Engineering, Environmental and Groundwater Geologists Since 1957

Appreciates

Robert Evangelista

for participating as an instructor of the Short Course

Groundwater Monitoring and Remediation Techniques

at the

Annual Association's Meeting in Long Beach, California
October 5th, 1992

Kelly F. Rowe

Chairman, AEG

Southern California Section

Copyright © 1992 by K. Rowe, V. Harris, D. Martin, and R. Evangelista. No part of this document may be reproduced, stored in a retrieval system, used in a presentation, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the author.

Copyright © 1992 by Robert A. Evangelista. No part of this document may be reproduced, stored in a retrieval system, used in a presentation, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the author.

Treatment Parameters

- Flow Rate
- Chemicals of Concern
- Influent Concentration
- Discharge Requirements

Flow Rate

- Flow Rate is a Design Variable
- Must Evaluate the Effect of Flow Rate on the Total Cost of the System and on the Time that is Needed for Clean-Up

First:

- Is the Flow Rate Necessary to Stop and Reverse the Movement of the Contamination Plume?
- Is it Desirable or CostEffective to Use Groundwater Control and Containment Methods, Such as Slurry Wall, to Stop the Movement of a Plume?

Second: What is the Amount of Groundwater Entering the Site?

- Groundwater for Up Gradient
- Surface Water from Rain and Run-off
- Confining Layer Below Aquifer Can Have Cracks and Fissures

May Be Able to Cap Surface with Impermeable Layer or Provide Good Drainage Away From Site to Reduce Surface Water

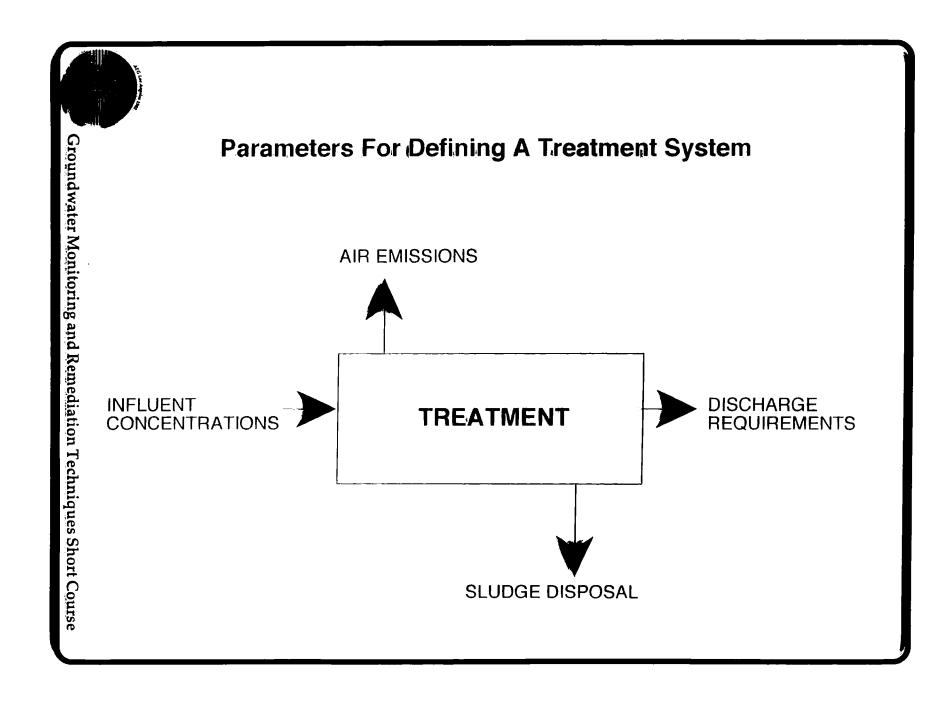
Third: Speed of the Clean-Up

- A Complicated Relationship Between Pumping Rate, System Design, and Remediation Time
- Must Decide Between the Cost of Increasing the Treatment System Size and the Cost Savings of Decreasing Clean-Up Time

Speed of the Clean-Up

What is the Relationship Between System Flow and Clean-Up Time?

- Necessary to Identify the Source or Sources of Contamination
- Next, Stop the Source(s) for Contributing to the Plume. May Need to Slow Clean-Up to Use Flushing Methods to Mobilize Contaminants into the Plume
- Seasonal Variation in Groundwater Levels May Occur. Contamination Remaining in the Unsaturated Zone During the Low Water Season May Require Slow Treatment Rate Over Several High Water Season.


Other Flow Rate Factors

The number of recovery wells or trenches used and their effectiveness at recovering the plume and remediating the site

A recovery system located closer to the leading edge of the plume will require less water (flow) to capture the contaminants but clean water will also be recovered

More flow will be required if some of the water is to be used to flush the unsaturated zone of contaminants. Although this technique may reduce the overall remediation time, increasing the total water to the site will increase the flow to the treatment system

Influent Concentration

Major factors affecting the concentration of contaminants

- The distance of the well from the original entrance of the contaminants to the aquifer
- The amount of material reaching the aquifer
- The solubility of the contaminants in water
- The relative density compared to water
- The biological and chemical transformation of the contaminants

Influent Concentration

Minor factors affecting the concentration of contaminants

- Rate of groundwater flow
- Mixing characteristics in the aquifer
- The combined effect of the above factors on concentration

Discharge Requirements

System design depends on the final disposition of the treated groundwater

- Surface Water Body. Regulated by the National Pollution Discharge Elimination System (NPDES) program. Determine if the discharge is direct or indirect, a regulated categorical discharge, requires bioassay testing, requires monitoring and reporting, and if the body is a sensitive environmental setting.
- Another Treatment System a POTW or an industrial wastewater treatment system. This is the preferred discharge for treated groundwater. An advantage of a POTW is accessibility to sewer; an advantage of an industrial treatment system is that allowable contaminant concentrations may be higher than other discharge options.

Discharge Requirements

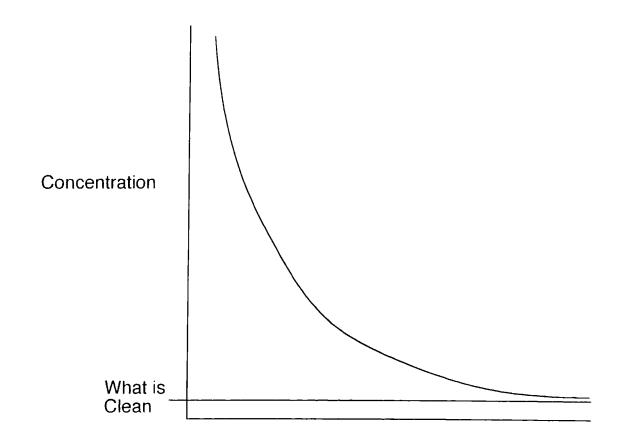
System design depends on the final disposition of the treated groundwater

- Direct Use. Must have very low effluent concentrations. Probably have to meet Federal drinking water standards.
- Ground or Aquifer. Strategically place recharge system to move plume. May be able to flush contaminants in the unsaturated zone. Any treated water reinjected outside the zone of influence should be at background concentrations

The Remediation Project

The influent concentration will change over the life of the project. The design must account for this cycle.

As we reach the last years of the project, the amount of contamination removed is minimal. May want to shut down the treatment system and actively monitor the groundwater until contaminant levels reach cleanup criteria by the biodegradation from naturally occurring bacteria.


How clean is clean? Established by:

- Risk assessment
- Drinking water standards
- Permit requirements
- Analytical detection limits

Life Cycle Concentration of a Remediation Project

The Design Methodology for the Remediation Project

- Time effect on influent parameters
- Capital costs
- Operator expense

Time Effect on Influent Parameters

Flow

The amount of water being <u>reused</u> may vary during the project

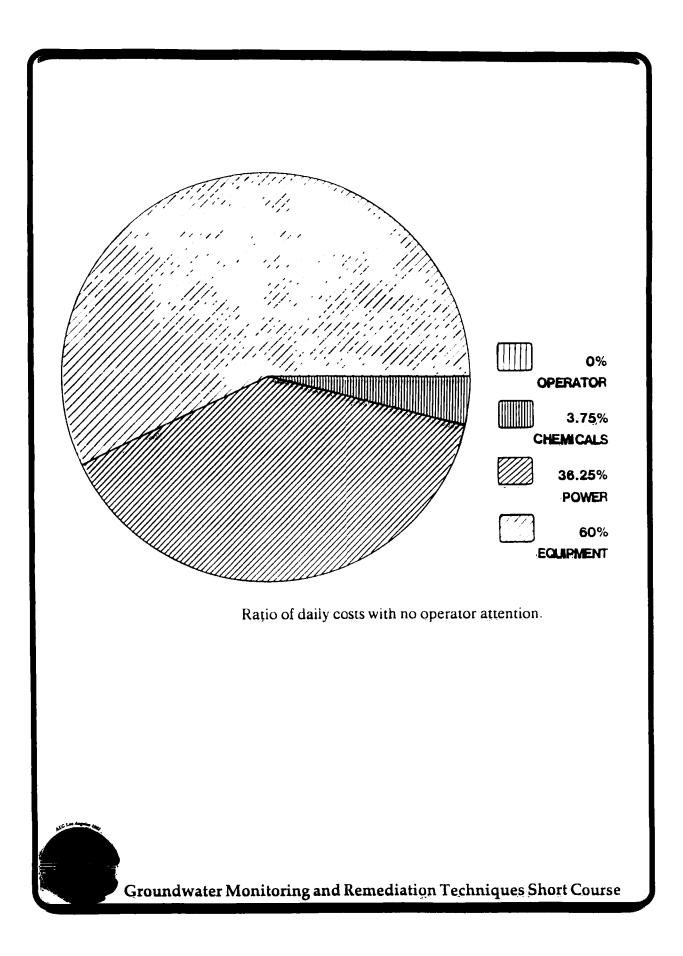
- Water may be reused to increase hydraulic head and remediate the plume
- Water may be reused to flush contaminants from the unsaturated zone
- Water may be reused for in situ contamination
- Drought may lower flow

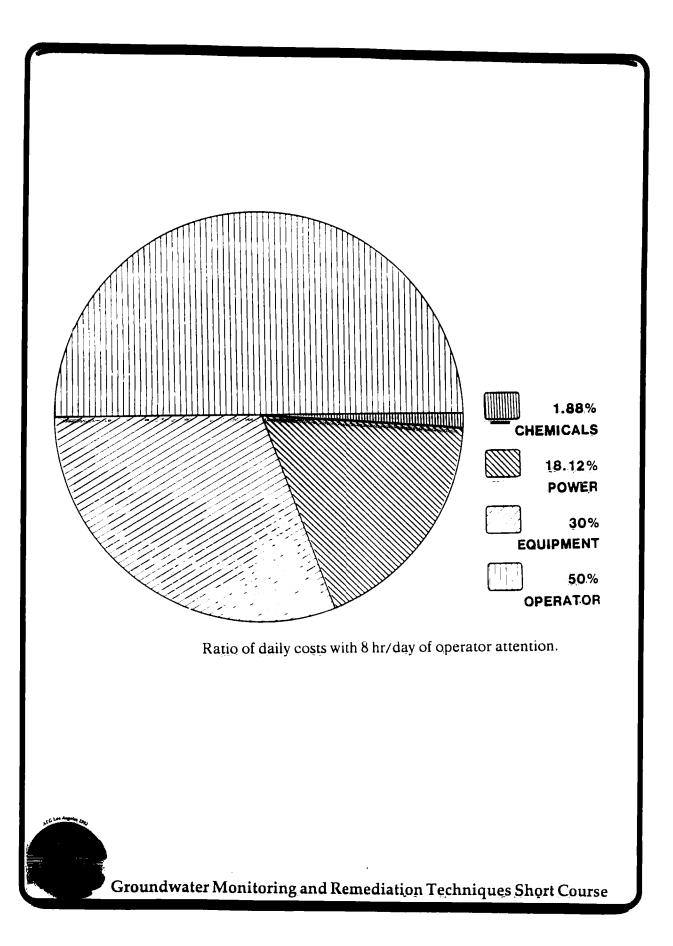
Time Effect on Influent Parameters

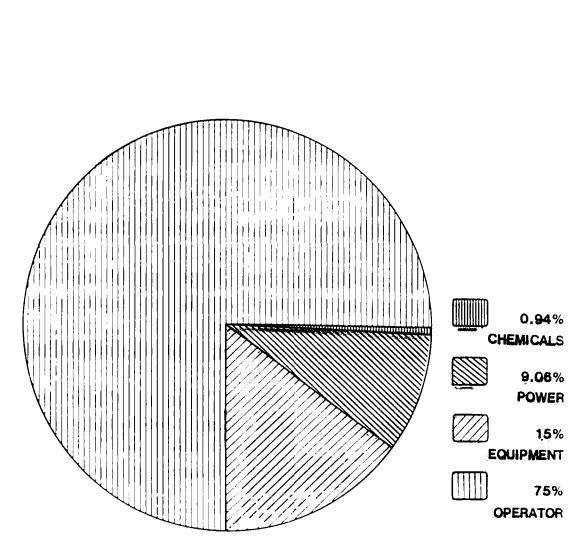
Concentration

Removal of contaminants by the treatment system and the dilation effect of clean water entering the site produce a steady decline in the concentration of the groundwater

- The design of certain technologies are based on a minimum concentration. For example, some bioprocesses depend on the settling properties of the bacteria. However, as the influent concentration declines, the mean cell age increases and the bacteria loose their settling properties and may be difficult to separated from the process.
- Operating cost may decline as concentration declines.


One formula for calculating costs would be:


$$C = \frac{\text{Cap}}{|1 - (1 + i)^{-n}|/i}$$


where

C is cost per time period nCap is capital cost i is the interest rate n is the period of time

Ratio of daily costs with 24 hr/day of operator attention.

Air Stripping

A Mass Transfer Technology Whereby Volatile Organic Compounds (VOCs) are Transferred From the Liquid Phase to the Vapor Phase.

Advantages:

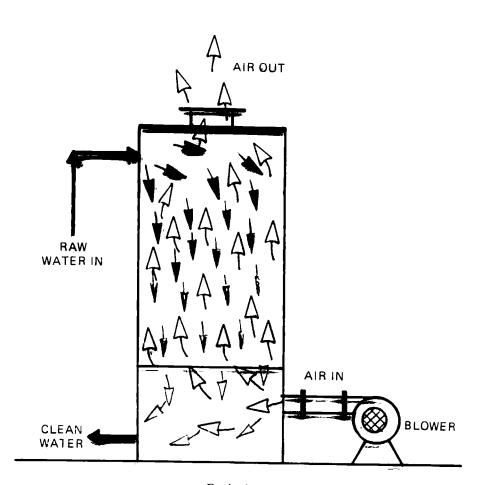
- Simplicity of Operation
- Low Capital Costs
- Low Operations and Maintenance Costs

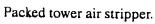
Limitations:

- Strippable Compounds Such as Chlorinated Solvents, Lightweight Aromatics
- High Iron Content Usually Causes Fouling Which Lowers Removal Efficiency and Increases Maintenance Costs

Costs:

- \$0.05 to \$0.25 / 1000 gal. Depending on Contaminants and No Air Stream Treatment
- Up to \$2.00 / 1000 gal. with Air Stream-Treatment




Air Stripping

Packed Tower

In a Packed Tower Air Stripper, Air and Water are Run Counter-Current Through a Media, Called Packing, Which Enhances Air/Liquid Contact. The Packing a Greater Surface Area of Liquid to Air Creating a Greater Transfer of Volatile Organics From the Falling Water to the Rising Air. The Packing also Mixes the Water so the VOCs are not Limited by Internal Diffusion Through the Water.

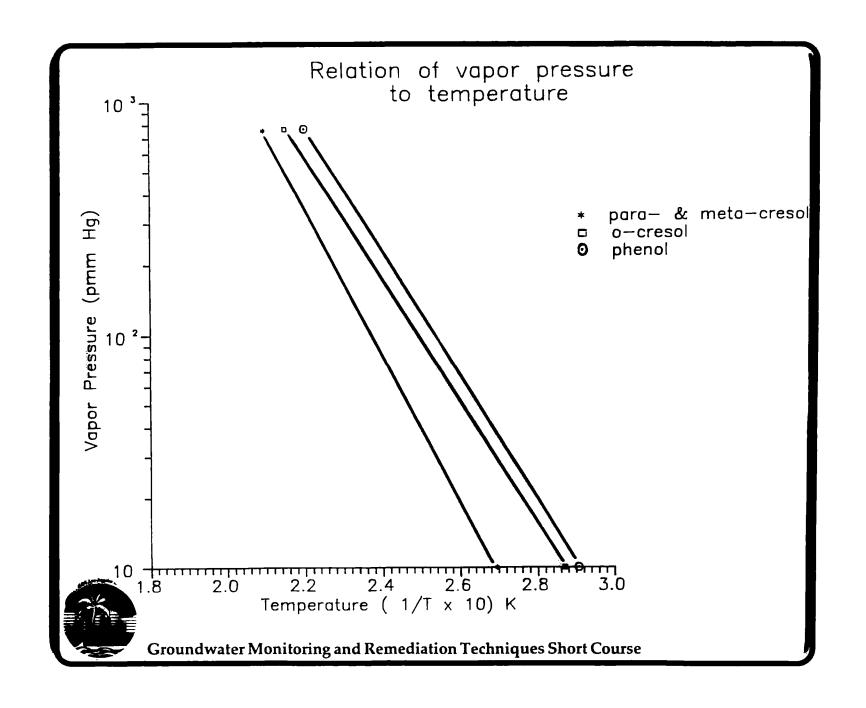
Air Stripping

Variables for Sizing a Packed Column:

- Tower Height
- Tower Cross-Section
- Air to Water Ratio
- Water Temperature

Tower Cross-Section Area is a Strong Function of Groundwater Flow Rate. The Area is Determined by the Flow Rate and the Liquid Loading Rate (Measure in GPM/ft².) Liquid Loading Rate Ranges From 15 to 35 GPM/ft².

Tower Height is a Strong Function of Removal Efficiency. The Greater the Required Efficiency, the Taller the Tower.


Air Stripping

Air to Water Ratio is a Function of Contaminant Removal. The More Volatile a Component, the Lower the Volume of Air Required to Strip It.

Air: Water:: 10:1 to 200:1

Inlet Water Temperature Affects the Volatility of a Component. Groundwater Temperature May Be Increased by Pre-Heating Inlet Water or by Direct Stream Injection. Temperatures May Be Raised to 140 to 180°F. The Limitation of High Temperature is Higher Operating Cost.

KEY ORGANIC CHEMICAL CHARACTERISTICS FOR TREATMENT SYSTEM DESIGN

(Primary Source: <u>Groundwater Treatment Technology</u>, with updates by K. Sullivan as found)

CHEMICAL	Solubility	Spec. Grav.	Henry's	Adsorp.	Bio. Deg.
1 Acatono	Infinito	0.70	٥٥۶	T	
1. Acetone	Infinite	0.79	0.05	Trace	D
2. Benzene	1780	0.88	240	76	D
Carbon Tetrachloride	800	1.59	1300	185	N,R
4. Chloroform	8000	1.48	170	1.6	N,D
5. Methylene Chloride	20,000	1.33	134	2.7	D
6. Chlorobenzene	500	1.11	228	190	D
7. Ethyl Benzene	152	0.87	323	210	D 1
8. Hexachlorobenzene	0.11***	2.04	33	NA	N !
9. Ethylene Chloride	8690	1.24	61	4	R
10.1.1.1-Trichloroethane	4400	1.34	200	155	N.R
11.1,1,2-Trichloroethane	4500	1.44	41	159	R
12. Trichloroethylene	1100***	1.46	450	140	R
13. Tetrachloroethylene	150***	1.62	1100	345	N,R
14. Phenol	82,000**	1.07	0.1	31.2	D
15. 2-Chlorophenol	28,500	1.26	1.74	93.1	D
Pentachlorophenol	14	1.98	0.13	805	R,D
17. Toluene	515	0.87	320	147	D
18. Methyl Ethyl Ketone	353,000	0.81	0.5	1.5	D
19. Naphthalene	32***	1.03	22	376	D
20 Vinyl Chloride	1.1***	0.91	359,000	Trace	В

Notes:

Solubility= mg/L @ 20 degC (*=10 degC, **=15 degC, ***=25 degC)

Specific Gravity (Water = 1.0)

Henry's Contant = atm-m³water/m³air

Adsorption Capacity = mg Compound/g Carbon (@ 500 ppb)

Adsorption Estimates supplied by Mr. Bob Byron, TIGG Corporation

Biodegradability (D=degradable, R=refractory, N=non-degradable)

N.B. Most values are derived for ideal, 'clean', single-compound solutions. Multi-contaminant systems may behave differently

Revised 6/87

The mass transfer equations for an air/water stripping system are:

$$Z = HTU \times NTU$$

$$HTU = L'/K_{la}$$

$$NTU = (R/(R-1)) \times \ln \left[((C_{inf}/C_{eff}) \times (R-1) + 1)/R \right]$$

where:

$$R = (H \times G)/(L' \times P)$$

and

HTU = Height of transfer unit (feet)

NTU = Number of transfer units (unitless)

H = Henry's law constant (atm)

G = Gas loading rate (cfm)

L' = Liquid loading rate (gpm/sq. ft.)

P = Operating pressure (atm)

Z = Packing height (feet)

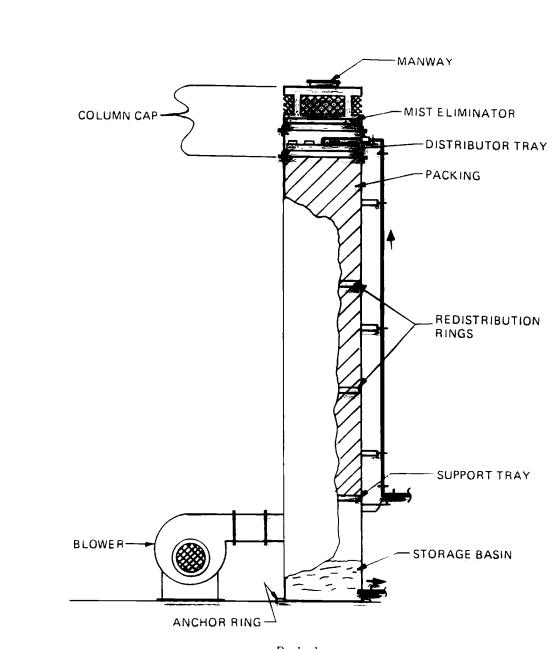
 C_{inf} = Influent concentration (μ g/l) C_{eff} = Effluent concentration (μ g/l)

 K_{la} = Overall mass transfer coefficient (sec⁻¹)

R =Stripping factor (unitless)

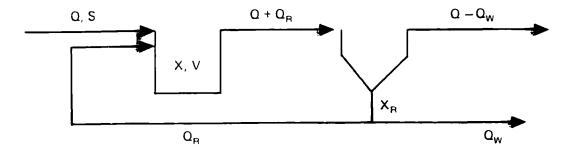
(Note: Unit conversion factors are not shown in the above equations. Units should be consistent.)

Air Stripping


The Key Variables to Define in the Mass Transfer Equations Are:

- Henry's Law Constant (H)
- Overall Mass Transfer Coefficient (K_{ea})

The Henry's Law Constant Can Be Obtained From Reference Books.


The Mass Transfer Coefficient is a Function of Tower Design and Packing Type. It Expresses the Overall Efficiency of the Tower. Best to Select a Mass Transfer Coefficient Based on Field Data From a Pilot Test. Testing Should Cover a Range of Liquid Loading Rates and Air to Water Ratios While Measuring the Resulting Effluent Concentration. The Mass Transfer Equations are Solved for K_{ea}.

Packed tower components.

Q = Flow

 $Q_R = \text{Recycle Flow}$

 Q_{W} = Sludge Wastage Flow

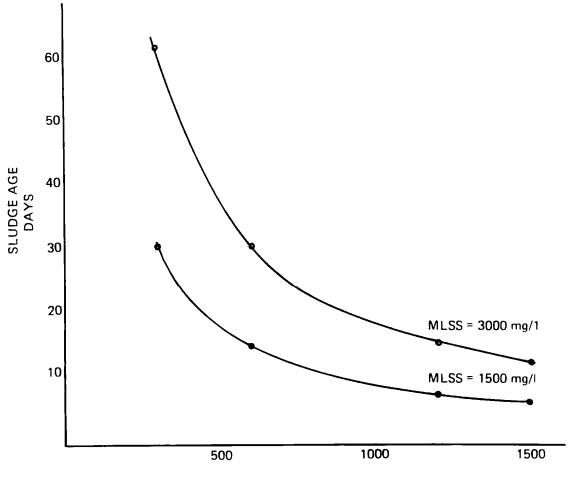
X = Mixed Liquor Suspended Solids (MLSS)

 X_R = Clarifier Underflow Solids Concentration

 $X_F = Effluent Solids Concentration$

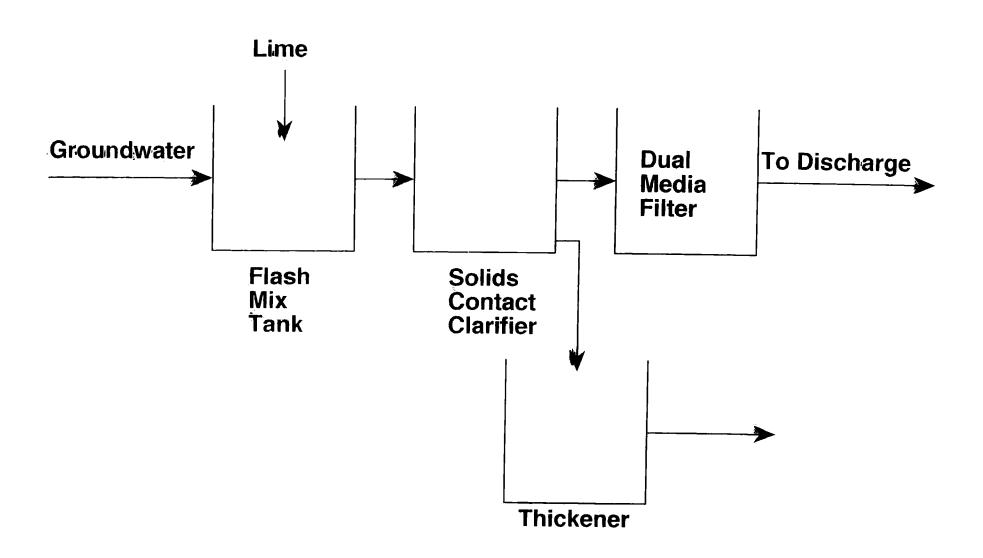
V = Volume of Aeration Basin

 $\mathcal{S} = \text{Organic Concentration}$

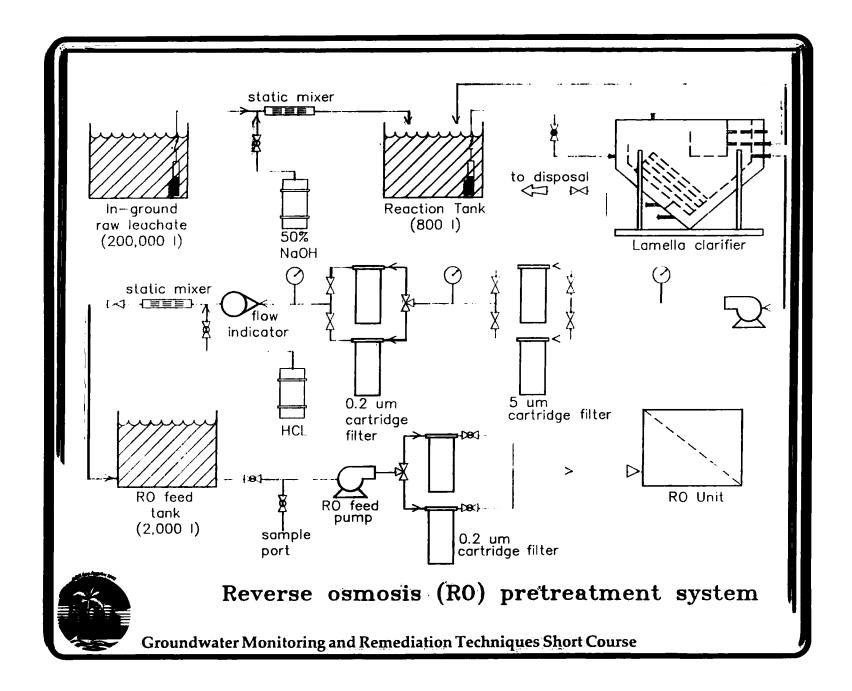

Activated sludge treatment system.

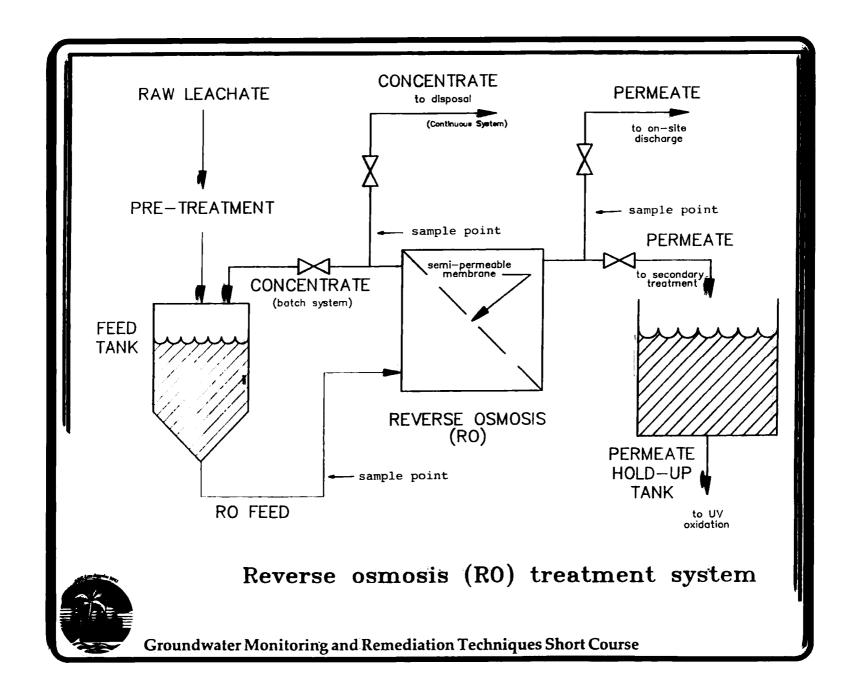
sludge age

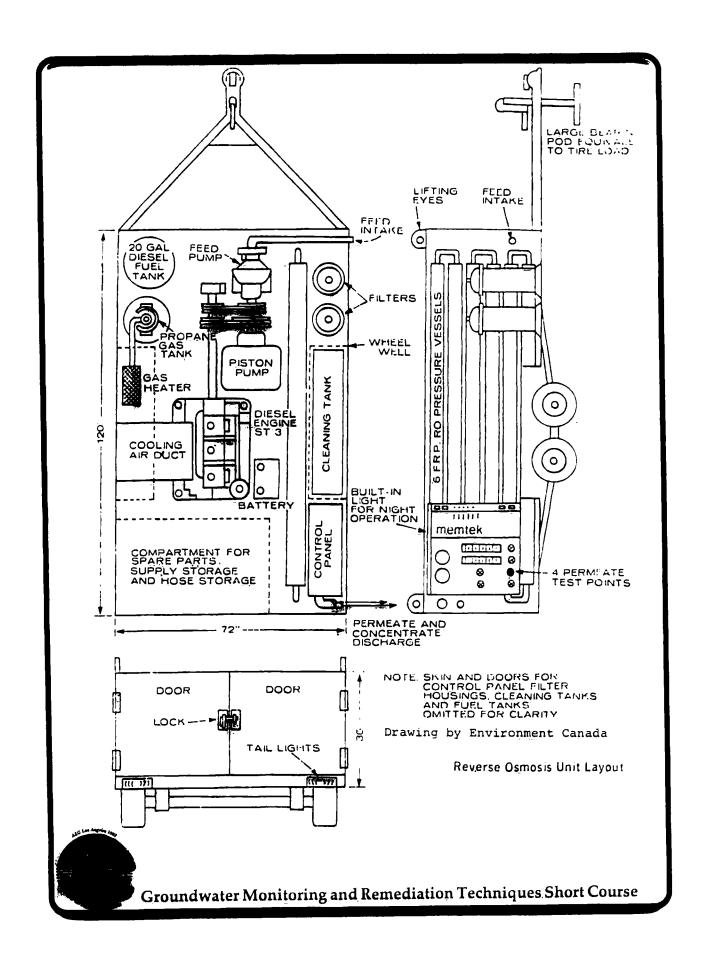
$$A = (X \times V)/(Q \times S \times Y)$$

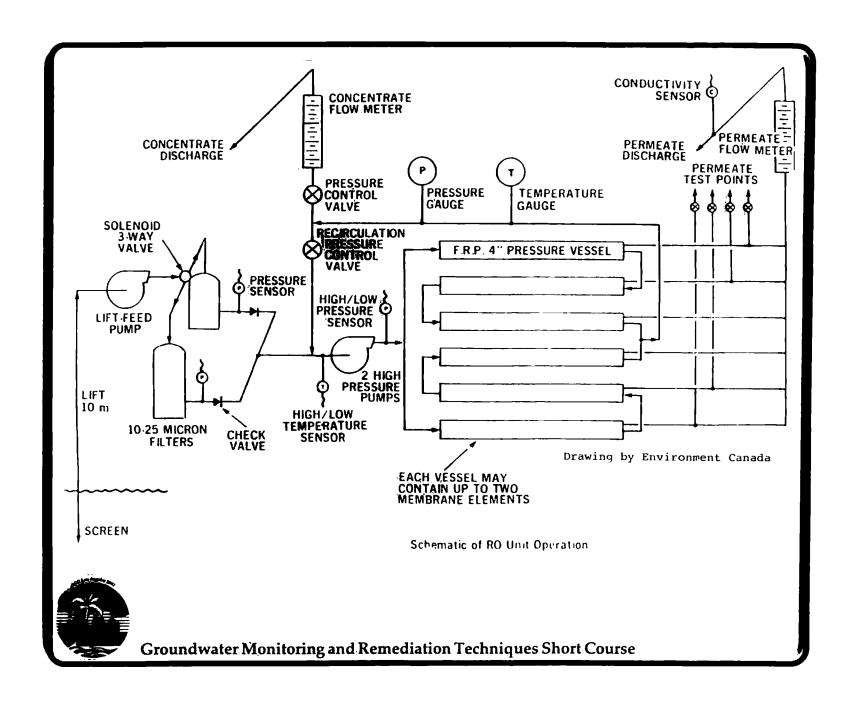


. Sludge age with life cycle influent concentrations.


Treatment Plant Design for a Heavy Metal




The Technology Uses A Semi-Permeable Membrane to Separate a Solute, Chemical Compound or Ion, From a Solvent or Groundwater. The Solvent Flows Through the Membrane, Under a Hydrostatic Pressure Greater Than the Osmotic Pressure, While the Larger Compounds are Rejected and Retained Behind the Membrane.


The Inlet Stream is Separated into Two Outlet Streams: the Permeate Which Contains the Treated Groundwater and the Retentate or Concentrate Which Contains Elevated Concentrations of the Chemicals of Concern. The Volume of the Retentate is Much Less Than the Inlet Volume and the Concentration of the Chemicals of Concern are Greater Than the Inlet Concentration; Therefore, Reverse Osmosis is a Volume Reduction Technology.

Membrane Separation Efficiency (E), in Terms of Chemical Rejection, is:

$$E = 1 - (C_p/C_p)$$

Where: C_P = Chemical Concentration in Permeate C_F = Chemical Concentration in Feed

Groundwater Recovery Fraction (R) is:

$$R = Q_p/Q_F$$

Where: $Q_P = Permeate Flow$ $Q_F = Feed Flow$

Advantages:

- Removes High Levels of Inorganic Salts and Heavy Metals
- Removal of Large Non-Polar Organic Compounds
- Removal of Most Polar Organic Compounds
- Can Be Used to Recycle Some Compounds

Limitations:

- Does Not Destroy Chemicals of Concern
- Does Not Remove All Organics
- Membrance Fouling Reduces Flow of Permeate, May Reduce Separation Efficiency, and Increase Operating and Maintenance Costs
- Groundwater May Require Pre-Treatment and System May Have to be Accurately Operated to Reduce Fouling

Operation and Maintenance Costs:

- Membrance Cleaning
- Membrance Replacement
- Unit Maintenance
- Monitoring
- Power Consumption

O & M Cost per 1000 Gallons to Remove THM from Groundwater:

\$0.68 for 700 GPM \$0.55 for 1700 GPM \$0.79 for 700 GPM

Total Cost per 1000 Gallons to Remove Agricultural Chemicals from Groundwater:

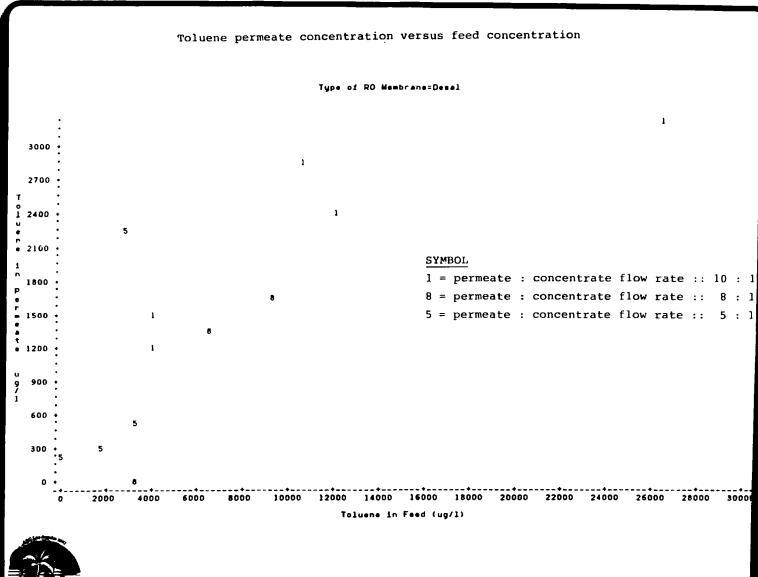
Flow	'nО	GAC	Air Stripping
7	\$5.00	\$4.05	\$1.30
70	\$3.30	\$2.05	\$0.57
700	\$1.95	\$1.00	\$0.31

PERCENT REJECTION OF CONTAMINANTS BY REVERSE OSMOSIS MEMBRANES

	UOP		DSI		TORAY		FILMTEC	
	Mean	n	Hean	n	Mean	n	Mean	n
VOLATILE ORGANIC (VOA)								
ORGANICS								
Methylene Chloride	35.7	12	48.9	11	46.9	7	50.5	11
Acetone	45.9	11	44.5	10	38.3	6	73.8	11
1,1-Dichloroethene	56.7	9	62.7	8	61.8	7	74.7	9
1,1-Dichloroethane	57.2	12	64.7	11	64.3	8	88.2	11
t-1,2-Dichloroethene	10.7	12	28.2	11	30.5	8	47.4	11
Chloroform	ND	11	ND	11	ND	-8	ND	11
1,2-Dichloroethane	41.0	12	52.3	12	53.7	9	75.3	11
1,1,1-Trichloroethane	76.9	12	85.2	12	85.7	9	93.3	11
Carbon Tetrachloride	42.9	4	54.1	3	43.2	3	59.3	3
Bromodichloromethane	67.0	10	75.6	10	62.3	7	91.6	10
1,2-Dichloropropane	3.5	3	43.7	2	98.3	1	72.5	1
Cis-1,3-Dichloropropane	0	3	32.7	3	27.5	3	24.7	3
Trichloroethene	43.8	12	59.9	12	50.9	9	59.8	11
Benz ene	53.5	12	57.9	12	68.2	9	83.9	11
t-1,2-Trichloroethane								

PERCENT REJECTION OF CONTAMINANTS BY REVERSE OSMOSIS MEMBRANES

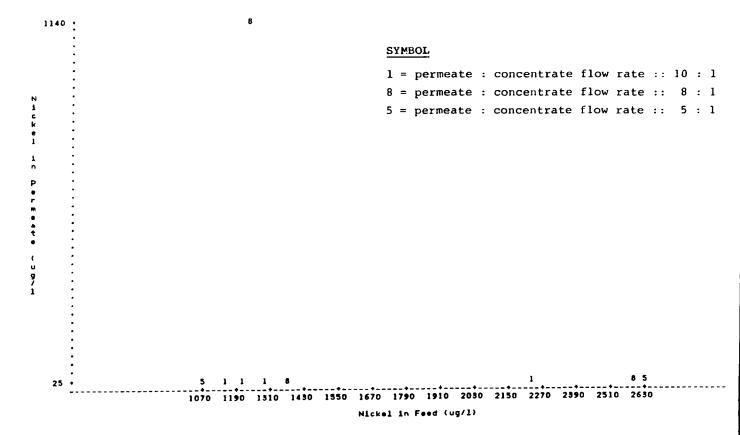
	uo	no.	D!	OSI		AY_	FILMTEC		
	Mean	n	Hean	n	Hean	n	Mean	n	
VOLATILE ORGANIC (VOA) ORGANICS				_					
t-1,3-Dichloropropane Dibromochloromethane	NO	10	MO	11	ND	7	NO	11	
Methyl Isobutyl Ketone	77.7	11	85.4	11	71.6	8	73.7	11	
Bromoform	74.9	10	91.5	9	69.1	8	99.5	9	
Tetrachloroethene	78.5	12	61.4	12	46.2	9	66.4	11	
Toluene	54.2	12	68.1	12	67.7	9	83.7	11	
Chlorobenzene	36.4	12	55.5	11	59.1	8	76.7	10	
Ethylbenzene	66.1	11	74.3	11	74.6	9	94.9	10	
meta- and para-Xylene	74.2	11	83.9	10	84.6	7	96.3	9	
ortho-Xylene	71.9	11	83.2	9	83.4	7	96.6	9	
SEMI-VOLATILE (BNA) ORGAN	N1CS								
Phenol	54.5	10	55.7	10	52.5	7	72.1	10	
Benzyi Alcohol	42.0	2	25.0	2	25.0	2	28.0	3	
1,2-Dichlorobenzene	64.4	10	91.7	10	73.3	7	87.9	10	
2-Methylphenol	47.3	7	73.4	6	49.0	7	77.8	9	
4-Methylphenol	78.6	10	57.4	10	59.8	7	89.8	10	
Isophorone	83.9	4	79.9	5	75.0	4	83.9	4	
2,4-Dimethylphenol	72.3	10	69.2	10	64.0	7	88.5	10	
Benzoic Acid	67.8	7	81.9	8	76.3	5	86.4	8	
Naphthalene	74.2	10	80.6	9	70.2	7	88.9	9	
2-Methylnaphalene	85.0	5	60.8	4	57.7	2	92.6	5	



PERCENT REJECTION OF CONTAMINANTS BY REVERSE OSMOSIS MEMBRANES

	UO	<u>P</u>	DS	11	TOR	AY	FILM	TEC
	Mean	n 	Hean	n	Hean	n 	Mean	n
Bis(2-Ethylhexyl)phthalate	78.4	10	76.4	8	54.9	6	71.1	9
)i-n-octylphthalate	50.0	6	41.7	6	63.7	3	52.3	10
i-n-butylphthalate	37.5	2	25.0	2	5 6.2	6	3 7.5	2
HEAVY METALS								
Antimony	89.6	6	89.6	6	75.8	6	85.7	6
Arsenic	95.4	8	8 5.0	8	61.5	6	98.6	8
Beryllium	ND	1	MD	1	ND	1	ND	1
Cadmium	ND	9	MD	9	ND	6	ND	9
Chromium	ND	9	MD	9	ND	6	ND	9
Copper	84.4	1	84.4	1	84.4	1	84.4	1
.ead	10.3	9	16.9	8	10.0	8	29.1	7
fercury	ND	1	MD	1	ND	1	NO	1
lickel	98.3	9	92.8	9	79.6	6	88.2	9
Selenium	1.7	3	19.4	3	ND	6	15.0	4
ilver	NO	9	ND	9	ND	6	ND	9
Thallium	NO	8	ND	8	ND	6	ND	8
linc	45.4	9	33.6	9	27.1	6	53.3	9

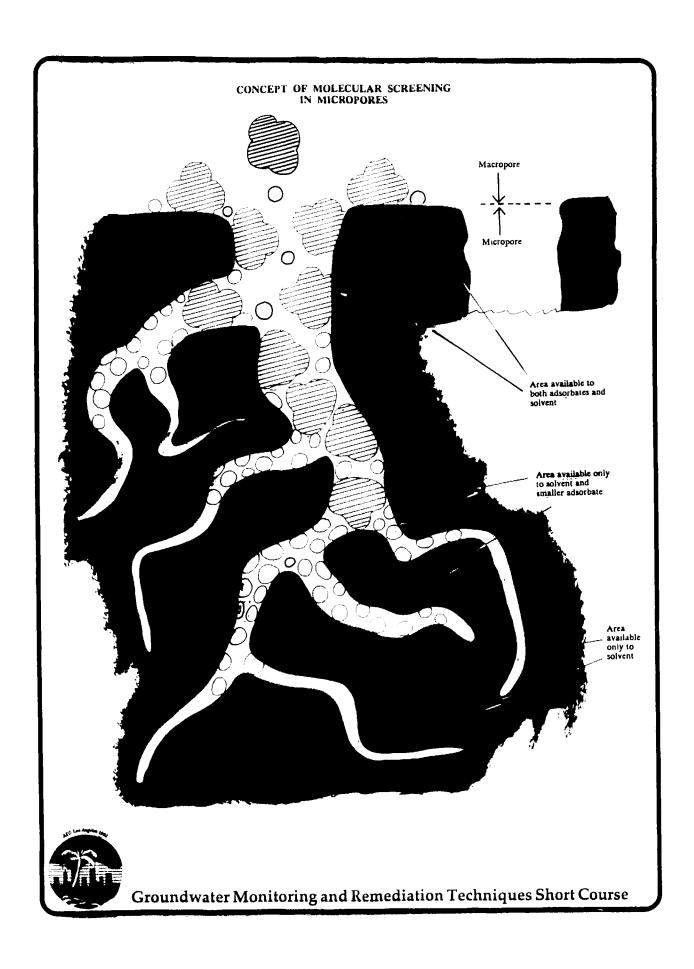
ND - Means not detected.


Arsenic permeate concentration versus time Type of RO Membrane=Torey SYMBOL 1 = permeate : concentrate flow rate :: 10 : 1 8 = permeate : concentrate flow rate :: 8 : 1 5 = permeate : concentrate flow rate :: 5 : 1 47.5 52.5 42.5 27.5 82.5 7.5 12.5 Total Operation Time (hours) Groundwater Monitoring and Remediation Techniques Short Course

Naphthalene permeate concentration versus feed concentration Type of RO Membrane=Desal SYMBOL 1 = permeate : concentrate flow rate :: 10 : 1 8 = permeate : concentrate flow rate :: 8 : 1 5 = permeate : concentrate flow rate :: 5 : 1 Naphthalene in Feed (ug/1)

Nickel permeate concetration versus feed concentration

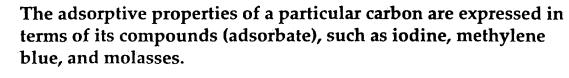
Type of RO Membrane=Filmtech



Technology uses a variety of carbons to selectively adsorb a wide range of organic and certain inorganic compounds. Cost of treatment ranges from \$0.38 to \$2,52 / 1000 gal.

Source materials are bituminous coal, coconut shell, lignite, pump mill residue and wood. The surface area, on which adsorption takes place, varies by carbon type but ranges between 500 and 1400 meters 2/gm.

Most of the surface area of carbon is part of the internal structure. This structure is comprised of macropores and micropores.



Adsorption is a 3 step mechanism

- External diffusion of compounds through the liquid to the carbon particle
- Internal diffusion through the macropores
- Adsorption to the surface

Molecular Screening

Many of the micropores are only large enough for small molecules. The effective surface area for adsorption exists only in pores that a molecule can enter. Therefore, the surface area for adsorption of a particular compound depends on its size and the available surface area accessible to it.

Freundlich Isotherm Equation

 $x/M = KC^{1/n}$ or

 $\log x/M = 1/n \log C + \log K$

On log/log paper

1/n = slope of the line

K = y intercept

x/M = is the ordinate of the graph

C = is the abscissa

Calculation of Carbon Capacity

To calculate the capacity of carbon for a particular species, an adsorption isotherm test is performed. A fixed volume of water containing a chemical of concern is mixed with a known weight of carbon. After equilibrium is reached, the carbon is removed and the residual chemical concentration, C, is measured. The amount of adsorbed chemical, x, is the initial concentration, C_o , minus the residual, or $x=C_o-C$. If M is the weight of the carbon, then x/M = the amount adsorbed per weight of carbon (mg/g), at a specific C_o . The test is repeated several times for different carbon doses, M.

COMPOUND: 1,1,1-Trichloroethane

STRUCTURE:

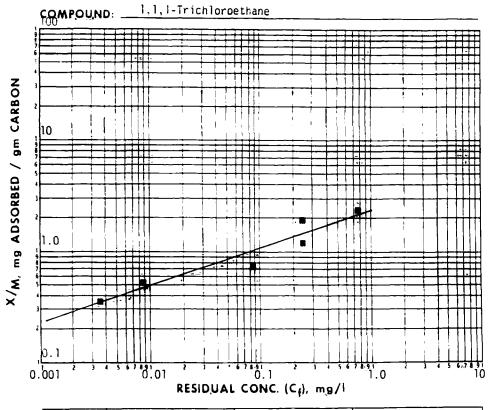
FORMULA: C2H3C13 MOL. WT. 133.41

FREUNDLICH	. PH					
PARAMETERS	5.3					
K	 48					
1/n	<u></u>					
Corr. Coet. r).97					
INITIAL CONC. mg/l		ADSORPTION CAPACITY, mg/gm				
1.0	2.5					
0.1	1,1					
0.01	0.51					
0.001	0.23					

CALCULATED CARBON REQUIREMENTS TO ACHIEVE INDICATED CHANGE IN CONCENTRATION (a)

SINGLE STAGE POWDERED CARBON GRANULAR CARBON COLUMN C_f, mg/l

C _o , mg/I	0.1	0.01	0.001
1.0	800	1,900	4,300
0.1		180	430
0.01			39

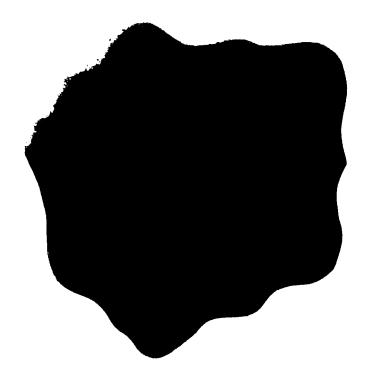

C _o , mg/i	
1.0	400
0.1	90
0.01	20

(a) Carbon doses in mg/l at neutral pH.

ANALYTICAL METHOD: G. C. - Purge and Trap

REMARKS:

	■ pH= 5.3			p.H=			pH=		
CARBON DOSE mg/l	Cţ	co-ci=x	X/M	Cţ	Co-Ci=X	x/M	Cf	co-cl=x	X/M
0	1.000			- -					_
96	0.768	0.232	2.41	r	- 	<u> </u>		- -	
385	0.240	0.760	1.97		ļ	ļ			
577	0.238	0.762	1.32		!	<u> </u>			!
1154	0.084	0.916	0.794		ļ	!			·
1923	0.008	70.991	0.516				•		†
2692	0.003	50.9965	0.370	-			-		_
	<u>.</u>	· -		. —		· ·	-	-	-



United States Environmental Protection Agency Municipal Environmental Research 1 ± Jratory Cincinnati OH 45268 EPA-600/8-80-023 April 1980

Research and Development

Carbon Adsorption Isotherms for Toxic Organics

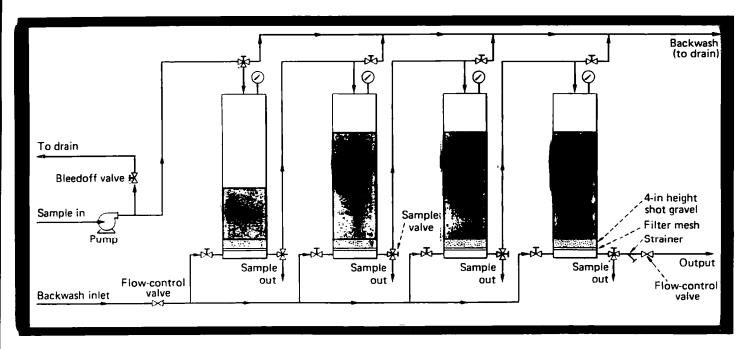
To estimate the capacity of carbon, use the x/M value that corresponds to the influent concentration, C_o . This value, $x/M @ C_o$, represents the maximum amount of contaminant adsorbed per unit weight of carbon when the carbon is in equilibrium with the untreated concentration.

For complete removal of the contaminant

$$Y = C_o / (x/M @ C_o)$$

Where

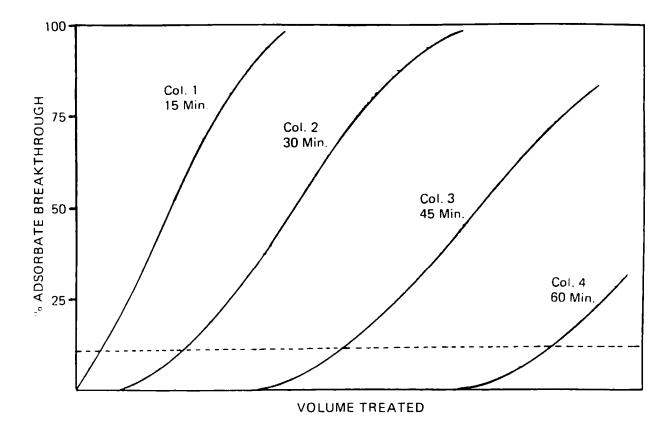
Y = weight of carbon required per unit volume of contaminated liquid



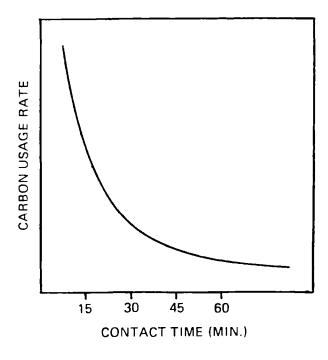
Dynamic Column Study

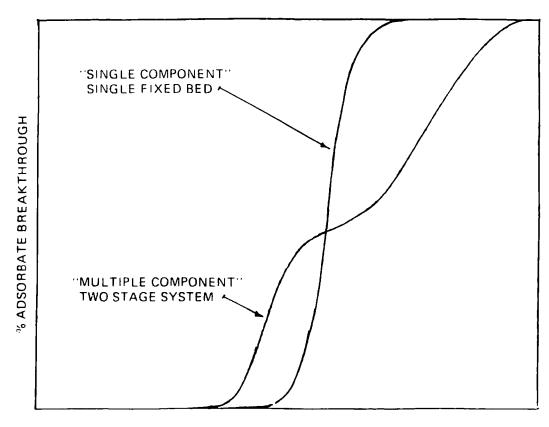
- Determines Optimum Operating Capacity
- Determines Contact Time
- Necessary for Adsorber Size and System Configuration

Superficial contact time ranges between 15 to 60 minutes per column. The rate of flow per unit area of column, surface loading, is in the range of 2 GPM/ft²


Laboratory series column adsorption test.

Dynamic Column Study


- Pump water through columns
- Take samples of effluent from each column
- Obtain a series of curves, each representing a column. The curves represent the concentration or amount of contaminants present in the effluent which have passed through the column unadsorbed.


Column study results: breakthrough curves.

Optimum carbon contact time.

Mass transfer zones for two typical breakthrough curves.

ACTIVATED CARBON CLASSES OF ORGANICS COMMONLY REMOVED

in general compounds which are non-polar and of high molecular leight (in the broad range of from four to 20 carbon atoms) are leadily removed from wastewater by the activated carbon.

collowing classes are commonly adsorbed by carbon:

- o Aromatic Hydrocarbons (benzene, toluene, xylene)
- o Polynuclear Aromatic (napthalene, anthracene, biphenyls)
- Chlorinated Aromatics (chlorobenzene, polychlorinated biphenyls, aldrin, endrin, toxaphene, DDT)
- o Phenolics (phenol, cresol, resorcinol and polyphenyls such as tannin and lignin derivatives)
- o Chlorinated Phenolics (trichlorophenol, pentachlorophenol)
- o High Molecular Weight Aliphatic and Branch Chain Hydrocarbons (gasolene, kerosene)
- o Chlorinated Aliphatic Hydrocarbons (carbon tetrachloride, perchloroethylene)
- High Molecular Weight Aliphatic Acids and Aromatic Acids (tar acids, 2,4-dichlorobenzoic acid, sulfonated lignins, benzoic acid)
- High Molecular Weight Aliphatic Amines and Aromatic Amines (aniline, tolugne diamine)
- o High Molecular Weight Ketones, Esters, Ethers and Alcohols (hydroquinone, polyethlene glycol)
- o Surfactants (alkyl benzene sulfonates, linear alcohol sulfates)
- o Soluble Organic Dyes (methylene blue, Indigo carmine, Benzopurpurin 4B Phthalocyanines)

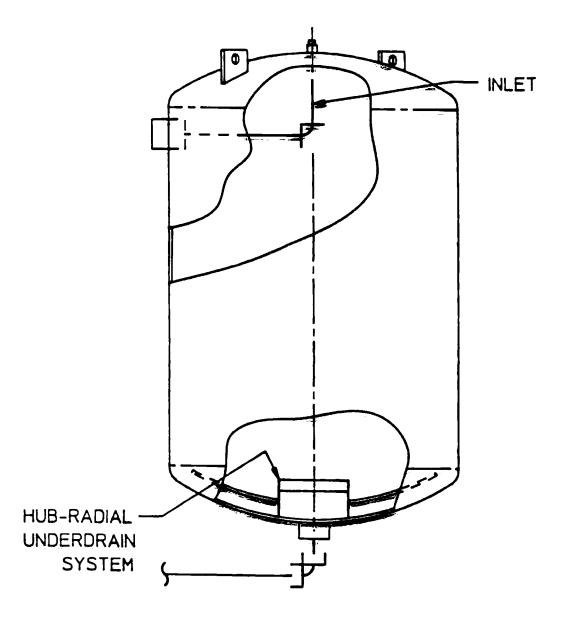
Source Calgon Bulletin

AMENABILITY OF TYPICAL ORGANIC COMPOUNDS TO ACTIVATED CARBON ADSORPTION

	Molecular weight	Aqueous solubility (%)	Concentrat	ion (mg/f)	Adsorbability		
Compound			Initial (C.)	Final (C,)	g compound/ g carbon	Percent reduction	
Alcohols							
Methanol	32 0	øn.	1,000	964	0.007	1.6	
Ethanol	46.1	øn	1,000	109	0.020	10.0	
Propanol	60.1	çan .	J,OXXX	811	0.038	[R 9	
Butanol	74	7.7	1,000	466	0 107	53.4	
n-Amyl alcohol	88.2	1.7	1,000	282	0.155	7 J. R	
n-Hexanol	102-2	0.58	1,000	45	0 191	94.5	
Isopropanol	60 1	œ	1,000	R74	0.025	12.6	
Allyl alcohol	5R (gen .	1,010	789	0.024	21.9	
Isobutanol	74 1	B 5	1,000	SRI	0.084	41 9	
t-Butanol	74 1	80	1,000	705	0.059	29.5	
2-Fihyl butanol	102.2	0.43	1,000	145	0.170	85.5	
2-Ethyl hexanol	130,2	0.07	7(X)	10	0:138	98.5	
Aldehydes							
Formaldehyde	30 0	œ	1,000	908	0.018	9.2	
Acetaldehyde	44 1	90	1,000	881	0.022	119	
Propionaldehyde	5R 1	22	1,000	723	0.057	27 7	
Butyraldehyde	72 1	7.1	000,1	472	0.106	52.8	
Acrotein	56.1	20.6	1,000	694	0.061	30.6	
Crotonaldehyde	70 1	15.5	1,000	544	0.092	45.6	
Benzaldehyde	106-1	0.11	((() ()	60	0 188	94 ()	
Paraldehyde	132.2	10.5	1,000	261	0.148	71.9	
Amines							
Di N Propylamine	101-2	GIO	1,000	198	0.174	RO 2	
Butylamine	73	con	1,000	480	0.103	52.0	
Di N Biitylamine	129 3	en en	000),1	130	0.174	87 O	
Allylamine	57 1	en .	1,000	686	0.063	31.4	
Ethylenediamine	60.1	an an	1,000	1 PK	0.021	10.7	

AMENABILITY OF TYPICAL ORGANIC COMPOUNDS TO ACTIVATED CARBON ADSORPTION

			Concentrat	ion (mg/f)	Adsorbability		
Compound	Molecular weight	Aqueous solubility (%)	Initial (C.)	Final (C.)	g compound/ g carbon	Percent reduction	
Diethylenetriamine	103.2	άο	1,000	706	0.062	29-4	
Monethanolamine	61 i	00	1,012	919	0.015	7 2	
Diethanolamine	105 1	95.4	996	722	0.057	27.5	
Triethanolamine	149.1	00	1,000	670	0.067	33.0	
Monoisopropanolamine	75 1	ano.	1,(KX)	K(K)	0.040	20.0	
Dusopropanolamine	133.2	87	1,000	543	0.091	45.7	
Pyridines and morpholines							
Pyridine	79.1	60 0	1,000	527	0.095	47.3	
2 Methyl 3 Ethyl	121.2	st. sot.	1,000	107	0 179	H9.3	
N Methyl morpholine	101.2	e rc	1,000	575	0.085	42.5	
N Lihyl morpholine	115.2	000	1,000	467	0.107	51.3	
Aromatics							
Benzene	78.1	0.07	416	21	0.080	95.0	
Toluene	92.1	0.047	317	66	0.050	79.2	
Ethyl benzene	106.2	0.02	115	18	0.019	H4 3	
Phenol	94	6.7	1,000	194	0 161	80.6	
Hydroguinone	110.1	6.0	1,000	167	0.167	813	
Andine	93.1	3.4	1,0890	251	0.150	74 4	
Styrene	104.2	0.03	180	18	0.028	H HH	
Nitrobenzene	123.1	0.19	1,023	44	0.196	95.6	
Esters							
Methyl acetate	74.1	31.9	1,010	760	0.054	26-2	
Ethyl acetate	88.1	8.7	T,0X00	495	0.100	50.5	
Propyl acetate	102.1	2	1,000	248	0.149	75.2	
Butyl acetate	116.2	0.68	1,000	154	0 169	84.6	
Primary amyl acetate	130.2	0.2	985	119	0.175	88.0	
Isopropyl acetate	102.1	2.9	1,000	319	0.137	9k I	


AMENABILITY OF TYPICAL ORGANIC COMPOUNDS TO ACTIVATED CARBON ADSORPTION

	Molecular weight	Aqueous solubility (%)	Concentration (mg/1)		Adsorbability*	
Compound			Initial (C _•)	Final (C _i)	g compound/ g carbon	Percent reduction
Methyl propyl ketone	86 1	4,3	1,000	305	0.139	69 5
Methyl butyl ketone	100.2	v. st. sof.	988	191	0.159	80.7
Methyl isobutyl ketone	f(R) 2	1.9	(00), [152	0.169	84 8
Methyl isoamyl ketone	114.2	0.54	986	146	0.169	R5 2
Diisobutyl ketone	142.2	0.05	300	nil	0.060	100.0
Cyclohexanone	98-2	2.5	1,000	332	0.134	66 R
Acetophenone	120.1	0.55	1,000	28	0.194	97.2
Isophorone	138.2	1.2	1,000	34	0.193	96 .6
Organic Acids						
Formic acid	46 O	œ	1,000	765	0.047	23.5
Acetic acid	60.1	\$	1,000	760	0.048	24.0
Propionic acid	74.1	œ	040,1	674	0.065	32.6
Butyric acid	88.1	œ	000,1	405	0.119	59.5
Valeric acid	102.1	2.4	1,000	203	0.159	79,7
Caproic acid	116.2	1.1	1,000	30	0.194	97.0
Acrylic acid	72.1	00	1,000	355	0.129	64.5
Benzoic acid	122.1	0.29	1,000	89	0.183	91.1
Oxides						
Propylene oxide	58.1	40.5	1,000	739	0.052	26.1
Styrene oxide	120.2	0.3	1,000	47	0.190	95.3

[•] Dosage — 5 g Carbon C/I solution.

ACTIVATED CARBON FILTER

- Technology Uses "Supercharged" Oxidation to Destroy Organic Compounds into CO₂, Water, Chlorides, and Smaller Organic Compounds (Where Incomplete Oxidation Occurs.)
- Chemical Oxidants, Such as Hydrogen Peroxide and/or Ozone, are Added to Groundwater in the Presence of UV Light to Create Free Radicals. The Free Radicals Greatly Enhance the Oxidation Rate of the Organic Compounds in the Groundwater. Advanced "Catalysts" May Be Added to Speed Reaction Rates of Refractive Compounds Such as Carbon Tetrachloride, Chloroform, And Trichloroethane.

REACTION RATES OF OZONE AND HYDROXYL RADICALS WITH VARIOUS CLASSES OF ORGANIC COMPOUNDS

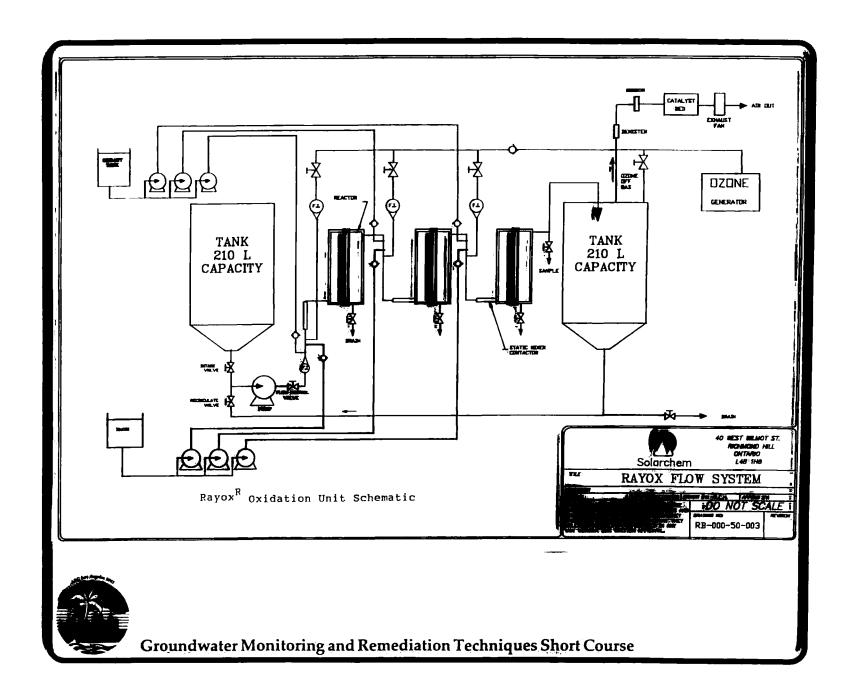
k, in L mole⁻¹ s⁻¹

COMPOUND	O ₃	ОН
Olefins S-containing	1 to 450 x 10 ³ 10 to 1.6 x 10 ³	10 ⁹ to 10 ¹¹ 10 ⁹ to 10 ¹⁰
organics Phenols	10^3	109
N-containing organics Aromatics	10 to 10 ² 1 to 10 ²	10 ⁸ to 10 ¹⁰ 10 ⁸ to 10 ¹⁰ 10 ⁸ to 10 ⁹
Acetylenes Aldehyde	50 10	10 ⁹ to 10 ¹⁰
Ketones Alcohols	10 ⁻² to 1 10 ⁻²	10 ⁸ to 10 ⁹ 10 ⁶ to 10 ⁹
Alkanes Carboxylic acids	10 ⁻³ to 10 ⁻²	10 ⁷ to 10 ⁹

Successfully Destroyed Contaminants:

TPH Propellants Freon **Complexed Cyanides BETXs** Dioxins, **Pesticides MTBE Furans Ethanol** 2,4D **DDT** Methanol Roundup Dinoseb Mercaptans **Hydrazines PAHs**

Solvents PCP Chlorinated Solvents
H,S Ordnance Compounds: Color Organic Dyes


TNT Phenols - DNT
PCBs - NG Glycol
- TMETN Ketones Alehydes
- TEGDN Citric Acid - PGDN

Typical Treatment Systems Include:

- Annular Reactor(s) in Series
- High Intensity UV Lamp(s) at Center of Reactor
- Quartz Sleeves Surrounding Lamp(s)
- Stainless Steel Construction
- Chemical Addition Systems
- O₃ Venting System
- Tankage

Advantages:

- No Toxics are Emitted to Air
- No Toxics are Adsorbed onto Media Requiring Landfilling or Regeneration
- Does Not Merely Concentrate Contaminants
- Effective for Wider Range of Contaminants Than Biotreatment
- Can Be Run Intermittently

Site 1

Treatment Time (Minutes) Chemical (ppb)

02.55 PCE704 ND ND

1,1 - DCE 263 ND ND

Freon - TF717553

TCE 54 ND ND

1,1,1 - TCA-2920

UV Dose: 160 Watt/l

'H₂O₂ Dose: 7 mg/l/min

Oxidation Time: 2.5 minutes

Flow Rate: 400 GPM

Cost/1000 gallons: \$1.37

Site 2

Treatment Time (Minutes) Chemical (ppb)

024 TCE 1924 57 ND

trans 1,2 -DCE 198 ND ND

UV Dose: 160 Watt/l

H₂O₂ Dose: 10 mg/l/min

Oxidation Time: 4 minutes

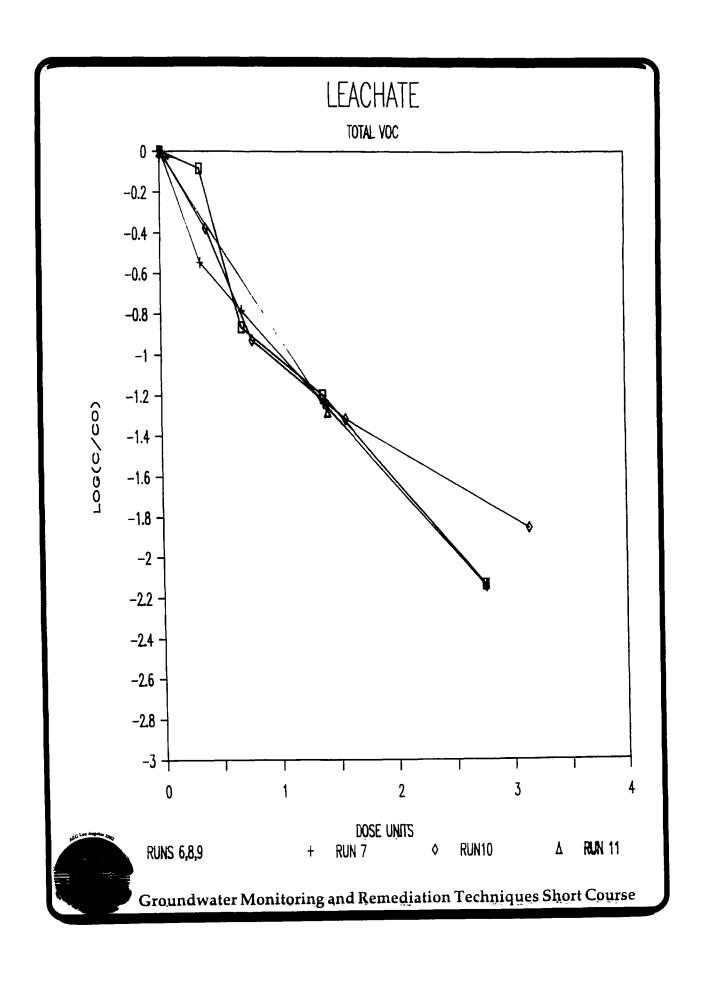
Flow Rate: 40 GPM

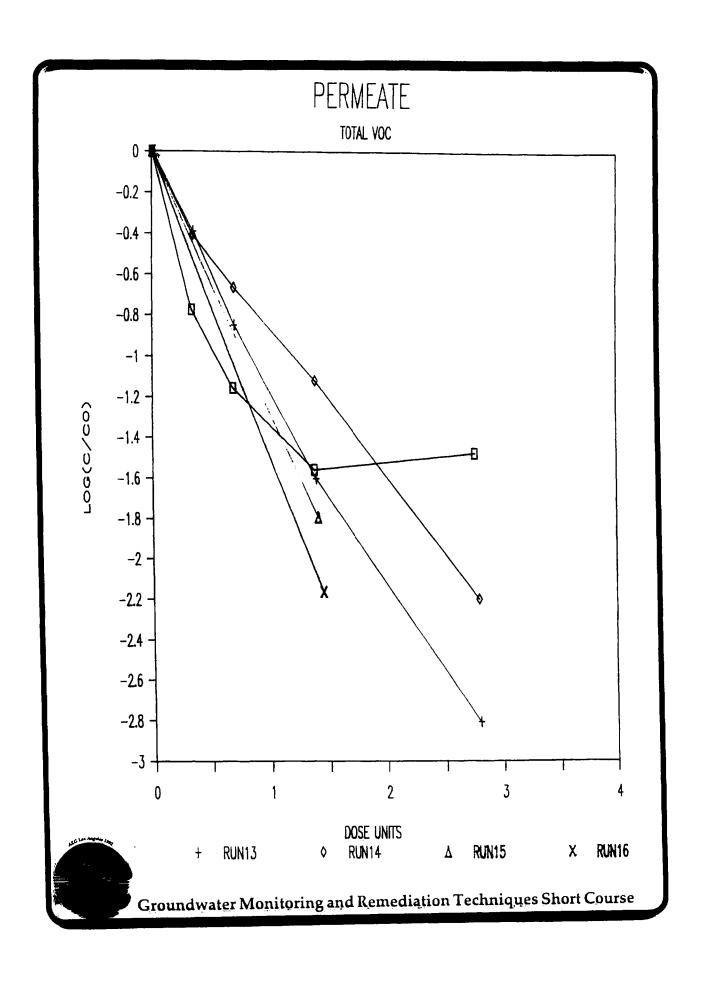
Cost/1000 gallons: \$2.08

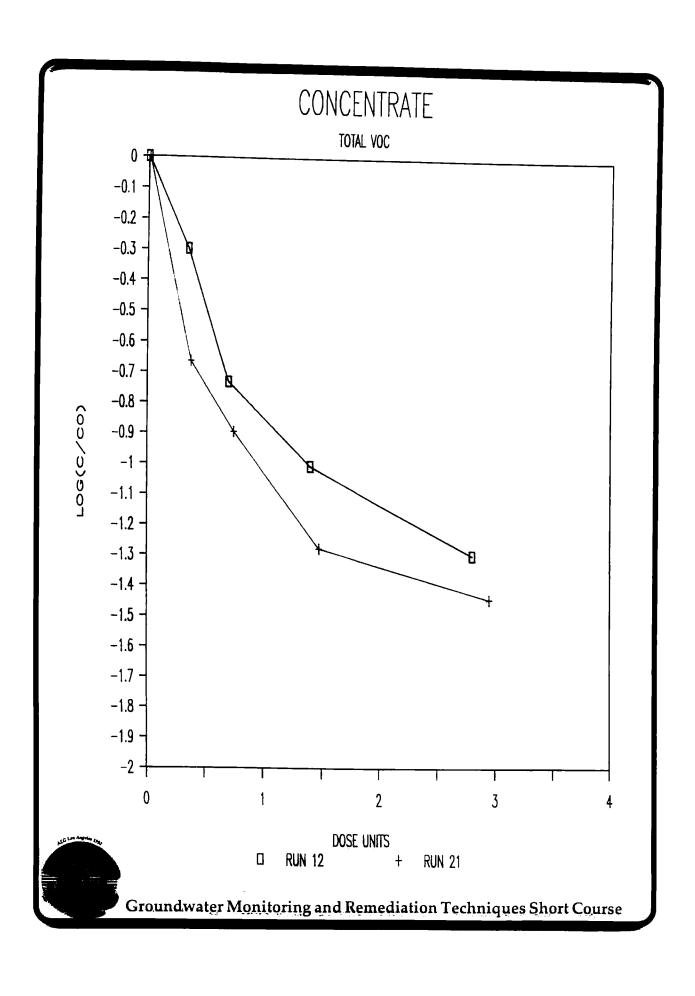
Site 3

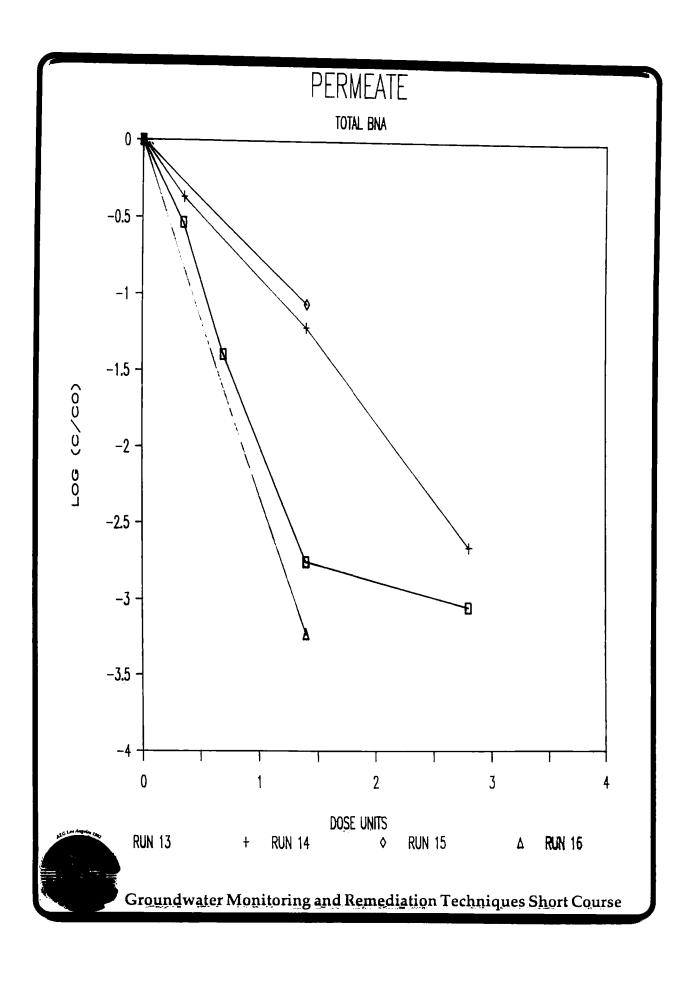
Treatment Time (Minutes) Chemical (ppb)
01545 Chloroform 7900 2300 38
1,2 - DCA 16900110ND Meth Chloride 3000
230 ND Carbon Tet-45 ND 1,1,1 - TCA -56
ND

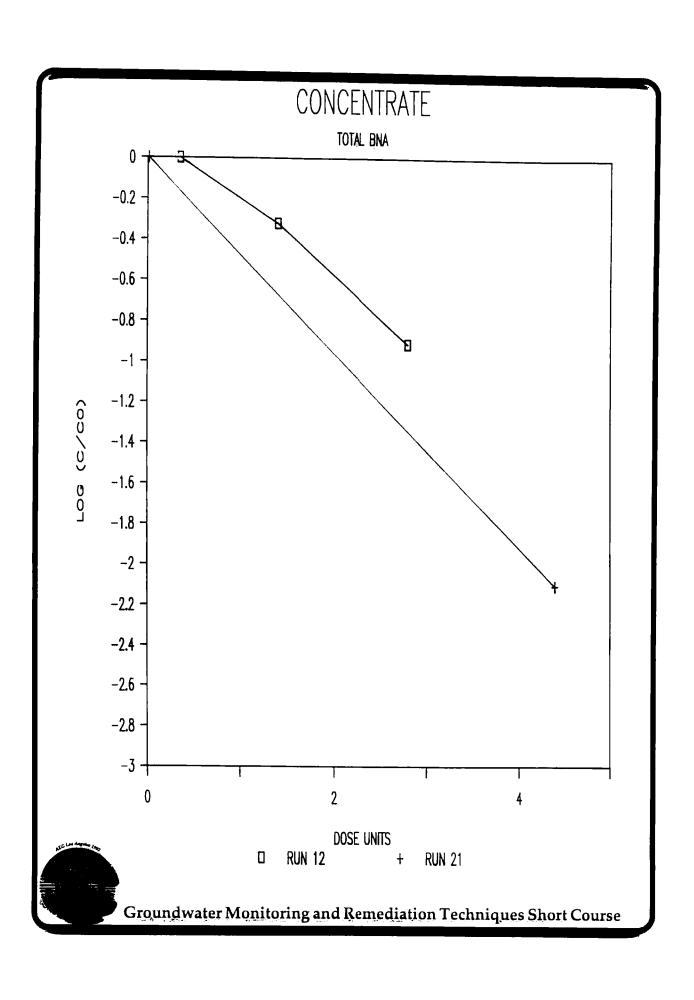
UV Dose: 160 Watt/l


H₂O₂ Dose: 150 mg/l/min


Oxidation Time: 45 minutes


Flow Rate: 15 GPM


Cost/1000 gallons: \$15.20



Enhanced Reduction

Works on the Premise That Difficult to Oxidize Substances May Be Easy to Reduce.

Technology Uses the Hydrated Electron as a Reducing Agent to Photodegrade Refractory Substances, Such As Chloroalkanes, Aliphatic Keytones, and Some Nitro Compounds.

The Reaction Rate Constants of Hydrated Electrons are Higher Than the Rate Constants of the Free Radicals with Chloroalkanes. The Difference Increases with Increasing Number of Chlorine Atoms.

The Technology Can Be Combined With and Can Follow Enhanced Oxidation.

Comparison of rate constants for the hydroxyl radical and the hydrated electron with chloro-organic compounds

	Rate Constant / 10 ⁹ M ⁻¹ s ⁻¹			
Pollytant	hydrated electron	hydroxyl radical		
CH ₂ Cl ₂	6.3	0.058		
CHCl ₃	30	~0.005		
CCI ₄	16	~().()()1		
CH ₂ =CCl ₂	23	6.8		
CHCI =CCI ₂	19	4.2		

Enhanced Reduction

Photodegradation Usually Follows First-Order Kinetics

$$V = \frac{3785 \cdot P_i(t / \cdot 60)}{V \cdot \log \cdot (c_i / c_f)}$$

EE/O = Electrical energy per order or the electrical energy (kWh) to reduce the concentration of a pollutant by one order of magnitude in 1000 gallons (3785 liters)

P = lamp power in (kW)

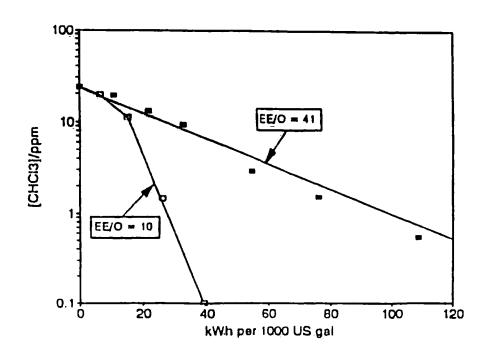
t = Irradiation time (minutes)

V = Reactor volume (liters)

c. = Initial concentration

c, = Final concentration

Enhanced Reduction


EE/O is Related to the First-Order Rate Constant, k (min -1), by:

$$k = \frac{145.25 P}{V (EE/O)}$$

EE/O Values < 10 Are Very Good.

COMPARISON OF Rayox® AND Rayox® R TREATMENT OF CHCl₃

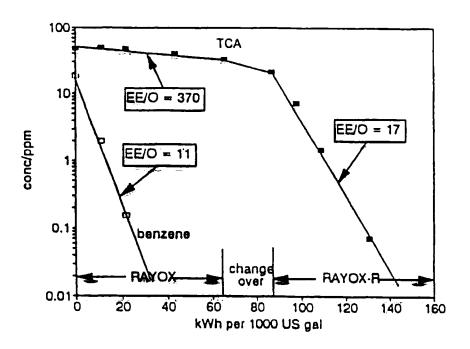


Figure 3 shows an example where a mixture of benzene (20 ppm) and trichloroethane (TCA) is subjected to a sequential Rayox® /Rayox® R treatment. In the Rayox® phase (0-65 kWh per 1000 USgal), the benzene treats very well (EE/O = 11), while the TCA is hardly treated at all (EE/O = 370). However, after the switch-over to the Rayox® R process, the TCA treats very well (EE/O = 17).

